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We shall start the first topic of the course: Linear Regression. We shall discuss both
frequentist and Bayesian approaches for linear regression. Both approaches end up with
identical solutions even though they use very different ideas. We start our discussion with
simple linear regression (where there is a single covariate), and then extend to multiple linear
regression (where there are multiple covariates).

1 Simple Linear Regression

We observe data (x1, y1), . . . , (xn, yn). xi denotes the covariate value and yi denotes the
response value for the ith observation. In the time series context, in our initial applications,
we shall apply linear regression with time as the covariate. For example, in the time series
dataset on the population of the United States for each month from January 1959 to De-
cember 2024: n denotes the total number of data points, xi = i and yi denotes the observed
population data for the ith month (first month is January 1959, second month is February
1959 and so on).

In the linear regression model, it is assumed that x1, . . . , xn are fixed deterministic values,
and that the response values y1, . . . , yn satisfy the model equation:

yi = β0 + β1xi + ϵi with ϵi
i.i.d∼ N(0, σ2).

Another way of writing the model is:

yi
independent∼ N(β0 + β1xi, σ

2).

There are three parameters in this model: β0, β1 and σ2.

We discuss frequentist and Bayesian approaches for estimating the parameters (as well
as uncertainty quantification) from the observed data. A key role in both approaches will
be played by the likelihood function which is the joint density of the observations given the
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parameter values. The likelihood function is given by:

fy1,...,yn|β0,β1,σ(y1, . . . , yn) =
n∏

i=1

1√
2πσ

exp

(
−(yi − β0 − β1xi)

2

2σ2

)

= (2π)−n/2σ−n exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

)

= (2π)−n/2σ−n exp

(
−S(β0, β1)

2σ2

)
(1)

where

S(β0, β1) :=
n∑

i=1

(yi − β0 − β1xi)
2.

Note again that we are assuming that x1, . . . , xn are fixed.

2 Frequentist Inference

Frequentist inference is most commonly done via Maximum Likelihood Estimators. The
MLEs for β0, β1, σ are obtained by maximizing the likelihood. From the expression (1) for
the likelihood, the following is a natural strategy for maximizing it: (a) first maximize over
β0, β1 for fixed σ. This is equivalent to minimizing S(β0, β1) and will lead to the MLEs β̂0
and β̂1. (b) Plug in the values β0 = β̂0 and β1 = β̂1 in (1) and then maximize over σ.

β̂0 and β̂1 are therefore given by the minimizers of S(β0, β1). It is left as an exercise to
verify that

β̂0 = ȳ − β̂1x̄ and β̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
,

where

ȳ =
y1 + · · ·+ yn

n
and x̄ =

x1 + · · ·+ xn
n

.

To get the MLE for σ, we need to maximize

(2π)−n/2σ−n exp

(
−S(β̂0, β̂1)

2σ2

)
.

It is left as an exercise to show that

σ̂MLE =

√
S(β̂0, β̂1)

n
.

The quantities β̂0, β̂1, σ̂ provide point estimates of the unknown parameters β0, β1 and σ.
More work is needed for uncertainty quantification. For this, one attempts to deduce the
distribution of β̂0, β̂1, σ̂. This can be done in closed form. As an example, for β̂1, we have

β̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
=

∑n
i=1 yi(xi − x̄)∑n
i=1(xi − x̄)2

∼ N

(
β1,

σ2∑n
i=1(xi − x̄)2

)
.

One can also check that, jointly, β̂0 and β̂1 have the following bivariate normal distribution:(
β̂0
β̂1

)
∼ N

((
β̂0
β̂1

)
,

σ2

n
∑n

i=1(xi − x̄)2

( ∑
i x

2
i −

∑
i xi

−
∑

i xi n

))
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These formulae are easier to deduce if we use matrix notation (which we shall do when we
look at multiple linear regression next week). The distribution of σ̂MLE is given by:

nσ̂2
MLE

σ2
∼ χ2

n−2

where χ2
n−2 denotes the chi-squared distribution with n − 2 degrees of freedom. The mean

of the chi-squared distribution equals its degrees of freedom which implies that

Eσ̂2
MLE = σ2n− 2

n
.

Therefore the MLE for σ2 is not unbiased (in contrast, the MLEs β̂0 and β̂1 are unbiased).
It is easy to correct the bias leading to the following unbiased estimator of σ2:

σ̂2
unbiased =

n

n− 2
σ̂2
MLE =

S(β̂0, β̂1)

n− 2
.

Usage of σ̂unbiased is much more common than that of σ̂MLE (note that σ̂unbiased is not unbiased
for σ; rather the square of σ̂unbiased is unbiased for σ2).

Another important fact is that (β̂0, β̂1) and σ̂2
unbiased are independent.

These facts are used to derive the following confidence interval for β1:[
β̂1 −

σ̂unbiased√∑
i(xi − x̄)2

tn−2,α/2, β̂1 +
σ̂unbiased√∑
i(xi − x̄)2

tn−2,α/2

]
(2)

where tn−2,α/2 is the positive point such that P{tn−2 ≥ tn−2,α/2} = α/2 (i.e., the t-distribution
with n− 2 degrees of freedom assigns probability mass α/2 to the right of tn−2,α/2). (2) is a
valid confidence interval because:

β̂1 − β1
σ

√∑
i

(xi − x̄)2 ∼ N(0, 1) and
β̂1 − β1

σ̂

√∑
i

(xi − x̄)2 ∼ tn−2

where tn−2 is the t-distribution with n− 2 degrees of freedom.

3 Bayesian Inference

The first step is to select a prior for the unknown parameters β0, β1, σ. A reasonable prior
reflecting ignorance is

β0, β1, log σ
i.i.d∼ Unif(−C,C)

for a large number C (the exact value of C will not matter in the following calculations).
Note that as σ is always positive, we have made the uniform assumption on log σ (by the
change of variable formula, the density of σ would be given by fσ(x) = flog σ(log x)

1
x =

I{−C<log x<C}
2Cx = I{e−C<x<eC}

2Cx .

The joint posterior for all the unknown parameters β0, β1, σ is then given by (below we
write the term “data” for y1, . . . , yn):

fβ0,β1,σ|data(β0, β1, σ) ∝ fy1,...,yn|β0,β1,σ(y1, . . . , yn)fβ0,β1,σ(β0, β1, σ).
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The two terms on the right hand side above are the likelihood:

fy1,...,yn|β0,β1,σ(y1, . . . , yn) ∝ σ−n exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

)
,

and the prior:

fβ0,β1,σ(β0, β1, σ) = fβ0(β0)fβ1(β1)fσ(σ)

∝ I{−C < β0 < C}
2C

I{−C < β1 < C}
2C

I{e−C < σ < eC}
2Cσ

∝ 1

σ
I {−C < β0, β1, log σ < C} .

We thus obtain

fβ0,β1,σ|data(β0, β1, σ)

∝ σ−n−1 exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

)
I {−C < β0, β1, log σ < C} .

The above is the joint posterior over β0, β1, σ. The posterior over only the main parameters
β0, β1 can be obtained by integrating (or marginalizing) the parameter σ. We shall do this
in the next lecture.
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