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In the past few lectures, we studied the MA(q) and AR(p) models which are reviewed
below.

1 MA(q)

The MA(q) model is given by:

yt = µ+ ϵt + θ1ϵt−1 + · · ·+ θqϵt−q

where, as always, ϵt
i.i.d∼ N(0, σ2). This process is always stationary. Its ACF ρ(h) equals 0

when |h| > q. The ACF is therefore considered a signature for the MA(q) model. Given an
observed time series dataset y1, . . . , yn, one can decide whether to fit an MA model to the
data by looking at the sample acf of the data. If the sample acf seems to become negligible
after a certain lag q, then the MA(q) would be a good model for the dataset.

2 AR(p)

The AR(p) model is defined by the equation:

yt − ϕ1yt−1 − · · · − ϕpyt−p = ϕ0 + ϵt (1)

This is an implicit definition in the sense that yt is defined as any set of random variables
that satisfy (1). There are, in fact, multiple solutions to (1).

Whether AR(p) is stationary or not depends on the exact values of the parameters
ϕ1, . . . , ϕp, and also on which solution to (1) is being considered.

2.1 p = 1

Consider p = 1 when the equation is given by:

yt − ϕ1yt−1 = ϕ0 + ϵt. (2)

Here it is quite easy to answer questions of stationarity by separately considering the following
three regimes:
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1. |ϕ1| < 1: Here (2) admits a unique stationary solution that is given by the formula:

yt =
ϕ0

1− ϕ1
+

∞∑
j=0

ϕj1ϵt−j . (3)

Note that the infinite series above is well-defined because |ϕ1| < 1 which means that
the powers ϕj1 decay rapidly. The process (3) has the property that ϵt is independent
of yt−1, yt−2, . . . . The process (3) is referred to as causal stationary AR(1).

2. |ϕ1| > 1: Here (2) admits a unique stationary solution that is given by the formula:

yt =
ϕ0

1− ϕ1
−

∞∑
j=0

ϵt+j

ϕj1
. (4)

This infinite series is also well-defined because the powers ϕ−j
1 decay rapidly as |ϕ1| > 1.

For (4), it is no longer true that ϵt is independent of yt−1, yt−2, . . . . Instead it is true
that ϵt is independent of yt+1, yt+2, . . . . The process (4) is referred to as the non-
causal stationary AR(1).

3. |ϕ1| = 1: Here (2) does not have a stationary solution. |ϕ1| = 1 refers to either ϕ1 = 1
or ϕ1 = −1. Of these two, the case ϕ1 = 1 is more commonly used. When ϕ1, the
equation (2) becomes

yt − yt−1 = ϕ0 + ϵt. (5)

This means that the differenced series yt − yt−1 is Gaussian white noise (plus a
constant ϕ0). When ϕ0 = 0, (5) is called the Random Walk model.

The AR(1) stationary solutions (3) (causal) and (4) (non-causal) can be derived directly
from the defining equation (2) using Backshift calculus as follows. B denotes the Backshift
operator satisfying Bkyt = yt−k, k here can be any integer positive or negative or zero (when
k = 0, we denote B0 by simply 1). The AR(1) equation, in backshift notation, becomes
ϕ(B)yt = ϕ0 + ϵt where ϕ(z) = 1 − ϕ1z and ϕ(B) = 1 − ϕ1B (here I = B0 is the identity
operator). This means that

yt =
1

ϕ(B)
(ϕ0 + ϵt) .

We now make sense of 1/ϕ(B). For this, we use the following:

1

1− r
= 1 + r + r2 + r3 + . . .

which gives

1

ϕ(B)
=

1

1− ϕ1B
= 1 + ϕ1B + ϕ21B

2 + · · · =
∞∑
j=0

ϕj1B
j

so that

yt =
1

ϕ(B)
(ϕ0 + ϵt) =

∞∑
j=0

ϕj1B
j (ϕ0 + ϵt) =

∞∑
j=0

ϕj1B
j(ϕ0)+

∞∑
j=0

ϕj1B
j(ϵt) =

∞∑
j=0

ϕj1+

∞∑
j=0

ϕj1ϵt−j .

The above infinite sums only make sense when |ϕ1| < 1, and we get

yt =
ϕ0

1− ϕ1
+

∞∑
j=0

ϕj1ϵt−j

which gives us the causal stationary solution (3).
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When |ϕ1| > 1, this definition of 1/ϕ(B) does not lead to anything meaningful. Here,
there is a different formula that can be used for 1/ϕ(B). This comes from:

1

1− r
= −1

r

1

1− (1/r)
= −1

r

(
1 +

1

r
+

1

r2
+ . . .

)
= −

∞∑
j=1

r−j .

This gives

1

ϕ(B)
= −

∞∑
j=1

B−j

ϕj1

and so
1

ϕ(B)
(ϕ0 + ϵt) = −ϕ0

∞∑
j=1

1

ϕj1
−

∞∑
j=1

B−jϵt

ϕj1
=

ϕ0
1− ϕ1

−
∞∑
j=1

ϵt+j

ϕj1

which is the non-causal stationary AR(1) in (4).

To recap, we have the following two formulae:

1

1− ϕ1B
=

∞∑
j=0

ϕj1B
j and

1

1− ϕ1B
= −

∞∑
j=1

B−j

ϕj1
. (6)

When |ϕ1| < 1, we use the first formula because it results in the powers ϕj1 which decay

rapidly with j. When |ϕ1| > 1, we use the second formula because it results in powers ϕ−j
1

which again decay rapidly with j.

When |ϕ1| = 1, then neither of the two formulae in (6) lead to rapidly decaying coefficients
(in other words, neither (3) nor (4) make sense). This is reasonable because, as was mentioned
last class, (2) does not have a stationary solution when |ϕ1| = 1.

2.2 p ≥ 1

The backshift method actually works for every p ≥ 1 and gives us correct answers for causal,
non-causal stationary regimes of AR(p). In backshift notation, the AR(p) difference equation
becomes

ϕ(B)yt = ϕ0 + ϵt where ϕ(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p.

We can therefore ’solve’ it by writing

yt =
1

ϕ(B)
ϵt =

1

1− ϕ1B − · · · − ϕpBp
ϵt

The next step is to make sense of 1/(1 − ϕ1B − · · · − ϕpB
p). It is natural here to factorize

the polynomial 1− ϕ1B − · · · − ϕpB
p into monomials, and then use (6). So we write

ϕ(z) = 1− ϕ1z − · · · − ϕpz
p = (1− a1z) . . . (1− apz). (7)

so that
ϕ(B) = (1− a1B) . . . (1− apB).

The numbers a1, . . . , ap appearing in (7) are simply the reciprocals of the roots of ϕ(z) i.e.,
the roots of ϕ(z) are given by 1/a1, . . . , 1/ap. Note here that some of the aj ’s can be complex
because the polynomial 1 − ϕ1z − · · · − ϕpz

p can have complex roots (even though all its
coefficients are real).
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We then get

yt =
1

(1− a1B) . . . (1− apB)
(ϕ0 + ϵt) =

p∏
k=1

1

1− akB
(ϕ0 + ϵt).

For 1/(1−ajB), we use (6). Specifically, if |aj | < 1, we use the first formula in (6) and when
|aj | > 1, we use the second formula in (6) (when aj is complex, |aj | denotes its modulus).
Thus we get

yt =
∏

k:|ak|<1

 ∞∑
j=0

ajkB
j

 ∏
k:|ak|>1

 ∞∑
j=1

B−j

ajk

 (ϕ0 + ϵt) . (8)

Suppose now that every |ak| is strictly smaller than 1. Then

yt =
∏
k

 ∞∑
j=0

ajkB
j

 (ϕ0 + ϵt)

=

 ∞∑
j1=0

aj11 B
j1

 . . .

 ∞∑
jp=0

a
jp
p B

jp

 (ϕ0 + ϵt)

=

 ∞∑
j1=0

· · ·
∞∑

jp=0

aj11 . . . a
jp
p B

j1+···+jp

 (ϕ0 + ϵt)

= ϕ0

∞∑
j1=0

· · ·
∞∑

jp=0

aj11 . . . a
jp
p +

∞∑
j1=0

· · ·
∞∑

jp=0

aj11 . . . a
jp
p ϵt−j1−···−jp .

Because each ak above was assumed to have modulus strictly smaller than 1, the series above
involves rapidly decaying powers of ak so it makes sense. The formula above writes yt in
terms of ϵt, ϵt−1, . . . . It can be checked that this is a causal, stationary solution. By collecting
terms where j1 + · · ·+ jp = j for each j = 0, 1, . . . , we can write this solution as

yt = µ+
∞∑
j=0

ψjϵt−j

for some µ, ψ1, ψ2, . . . .

If |ak| > 1 for even one k, then it is easy to see that (8) would give

yt = µ+
∞∑

j=−∞
ψjϵt−j

for some ψj , j = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . . In this case, the formula for yt involves future
values of ϵt so this is a non-causal stationary solution.

Finally if |ak| = 1 even for one k, then we cannot make sense of 1/(1 − akB) (both the
formulae in (6) fail to work). This hints that a stationary solution might not exist in this
regime. This indeed turns out to be true.

Here is a summary of the discussion above: To determine the nature of the solutions of
the AR(p) equation (1), first compute the roots z1, . . . , zp of ϕ(z) = 1−ϕ1z− · · ·−ϕpz

p and
set aj = 1/zj for j = 1, . . . , p.

1. If |ak| ̸= 1 for every k (i.e., no root of ϕ(z) has modulus equal to 1), then there exists
a unique stationary solution to (1).

4



2. If |ak| < 1 for every k, then the unique stationary solution is causal i.e., it can be
written as yt = µ+

∑∞
j=0 ψjϵt−j (the right hand side of this formula does not involve

ϵs for any future time s > t).

3. If |ak| < 1 for some k and |ak| > 1 for some other k, then the unique stationary solution
will be of the form yt = µ+

∑∞
j=−∞ ψjϵt−j . This is called a non-causal solution as the

formula for yt involves future values ϵs for s > t.

2.3 The Box-Jenkins Modeling Philosophy

G. Box and G. Jenkins (two researchers who developed ARIMA models) recommended the
following:

1. Only work with causal stationary AR models (actually also ARMA models that we
shall study soon after).

2. If the data are such that stationary models are not a good fit, then preprocess the data
using differencing. After appropriate differencing, fit causal stationary ARMA models.

We shall see some real examples of this approach.

3 ARMA(p, q) models

The combination of ideas behind the AR and MA models are generalized to obtain ARMA
models. The ARMA(p, q) model is defined by the equation:

(yt − µ)− ϕ1 (yt−1 − µ)− · · · − ϕp (yt−p − µ) = ϵt + θ1ϵt−1 + · · ·+ θqϵt−q

where, as usual, ϵt
i.i.d∼ N(0, σ2). The unknown parameters in this model are µ, ϕ1, . . . , ϕp, θ1, . . . , θq

and the noise standard deviation σ. In Backshift notation, we can write

ϕ(B) (yt − µ) = θ(B)ϵt

where ϕ(B) and θ(B) are the AR and MA polynomials:

ϕ(z) := 1− ϕ1z − · · · − ϕpz
p and θ(z) = 1 + θ1z + · · ·+ θqz

q

applied to the Backshift operator B.

It can be shown that if the AR polynomial ϕ(z) has all roots with modulus strictly larger
than 1, then the ARMA(p, q) difference equation has a stationary and causal solution. This
solution can be written in the form:

yt = µ+ ψ0ϵt + ψ1ϵt−1 + ψ2ϵt−2 + . . . .

These coefficients {ψj} can be explicitly determined in terms of ϕ1, . . . , ϕp and θ1, . . . , θq by
solving the equation: ψ(z) = θ(z)/ϕ(z) (here ψ(z) := ψ0 + ψ1z + ψ2z

2 + . . . ) which can be
done by writing

θ(z) = 1 + θ1z + · · ·+ θqz
q = ϕ(z)× ψ(z) = (1− ϕ1z − · · · − ϕpz

p)
(
ψ0 + ψ1z + ψ2z

2 + . . .
)

and then equating the coefficients of zj on both sides for j = 0, 1, . . . to get

1 = ψ0, θ1 = ψ1 − ψ0ϕ1, θ2 = ψ2 − ψ1ϕ1 − ψ0ϕ2, θ3 = ψ3 − ϕ1ψ2 − ϕ2ψ1 − ϕ3ψ0, . . .
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ARMA(p, q) models generalize both AR(p) and MA(q) models. When p = q = 0 (i.e., when
ϕ(z) = 1 and θ(z) = 1), we obtain the white noise model. When p = 0 (i.e., when ϕ(z) = 1),
we get the MA(q) model. When q = 0 (i.e., when θ(z) = 1), we get the AR(p) model.

The ACF and PACF functions of causal stationary ARMA(p, q) models when both p
and q are nonzero are more complicated compared to those of AR(p) and MA(q) models.
In particular, neither the ACF nor the PACF cuts off after a certain lag for ARMA(p, q)
models with both p, q ≥ 1.

4 Additional Optional Reading

1. Sections 3.1, 3.2, 3.3, 3.4 of Shumway-Stoffer 4th edition.
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