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1 ARMA(p, q) Model

The ARMA(p, q) model is given by the equation:

(yt − µ)− φ1(yt−1 − µ)− · · · − φp(yt−p − µ) = εt + θ1εt−1 + · · ·+ θqεt−q

where, as usual, εt
i.i.d∼ N(0, σ2). In backshift notation, this equation becomes

φ(B)(yt − µ) = θ(B)εt (1)

where φ(B) and θ(B) are the AR and MA polynomials:

φ(z) = 1− φ1z − · · · − φpzp and θ(z) = 1 + θ1z + · · ·+ θqz
q

applied to the backshift operator B. Another way of writing (1) is:

φ(B)yt = δ + θ(B)εt,

where we now write the intercept term δ explicitly on the right hand side.

We can write the solution to (1) as

yt − µ =
θ(B)

φ(B)
εt.

To make sense of the right hand side above, we can factorize φ(z) as:

φ(z) = (1− a1z)(1− a2z) . . . (1− apz).

Here 1/a1, . . . , 1/ap are the roots of φ(z). This gives

yt − µ =
θ(B)∏p

k=1(1− akB)
εt = θ(B)(1− a1B)−1 . . . (1− apB)−1εt

Each term (1− akB)−1 can be expanded via one of the following two formulae:

(1− akB)−1 =

∞∑
j=0

ajkB
j or (1− akB)−1 = −

∞∑
j=1

1

ajkB
j
.
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depending on whether |ak| < 1 or |ak| > 1. This allows us to write yt − µ in terms of {εt}.
If |ak| < 1 for every k, we can write

yt = µ+

∞∑
j=0

ψjεt−j

for some ψ0, ψ1, ψ2, . . . . This is a causal stationary process. We shall only work with
ARMA(p, q) models in the causal stationary regime (which corresponds to φ(z) having
all roots of modulus strictly larger than 1).

ARMA(p, q) is a more sophisticated model compared to pure AR(p) and MA(q). For
AR(p), the theoretical PACF becomes zero for lags h > p. For MA(q), the theoretical ACF
becomes zero for lags h > q. For ARMA(p, q) with both p and q at least one, one of these is
true about the ACF and PACF. It is therefore to determine an appropriate choice for p and
q for fitting an ARMA(p, q) model looking at the ACF and PACF. In practice, one usually
searches over a range of p and q values using a model selection criterion such as AIC, BIC
or Cross-Validation.

2 The Box-Jenkins Time Series Modeling Strategy

Box and Jenkins popularized the following strategy for modeling an observed time series
y1, . . . , yn:

1. Generally y1, . . . , yn will exhibit various kinds of trends. Preprocess the data to trans-
form it to another series xt which does not have any discernible trends.

2. Fit an ARMA(p, q) model for appropriate p and q to the transformed data xt.

The preprocessing in the first step above is usually done in one of the following two ways:

1. Differencing. The first difference of {yt} is given by ∇yt := yt− yt−1 for t = 2, . . . , n.
The second difference is given by

∇2yt = ∇ (∇yt)
= ∇ (yt − yt−1) = ∇yt −∇yt−1 = (yt − yt−1)− (yt−1 − yt−2) = yt − 2yt−1 + yt−2.

Higher order differences ∇kyt are defined recursively. Note that the length of the time
series comes down after each successive differencing. For example, ∇yt has length n−1,
∇2yt has length n− 2 and so on. Differencing usually eliminates increasing/decreasing
trends. Usually one or two orders of differencing is enough to take care of increas-
ing/decreasing trends.

2. Seasonal Differencing. Seasonal differencing is used to eliminate seasonal trends.
Suppose we have a dataset having seasonal trends with period s (for example, for
monthly datasets, s = 12). The seasonal first difference of yt with period s is defined
as

∇syt := yt − yt−s
Note that ∇syt is a time series of length n− s. The second order seasonal difference is

∇2
syt = ∇s (∇syt) = yt − 2yt−s + yt−2s

and higher order seasonal differences are defined recursively. Seasonal differences elim-
inate seasonal trends. Usually, in datasets having seasonal and increasing/decreasing
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trends, one first takes a seasonal difference. This often eliminates seasonality and
might also eliminate the linear trend. If a linear trend still persists, one takes a regular
difference of the seasonal differenced series. This will often give a series with no trend
and seasonality.

To the transformed data xt, one fits an ARMA(p, q) model which can be done via the ARIMA

function from the statsmodels library. The order p and q can be determined via a model
selection criterion such as AIC or BIC.

3 ARIMA models

ARIMA stands for AutoRegressive Integrated Moving Average. ARIMA is essentially dif-
ferencing plus ARMA.

Definition 3.1 (ARIMA). A time series model yt is said to be ARIMA(p, d, q) if

φ(B)((∇dyt)− µ) = θ(B)εt,

where εt
texti.i.d∼ N(0, σ2).

ARIMA models are fit by the function ARIMA() in statismodels. The mean µ above is
taken to be zero by default when the order parameter d in ARIMA is strictly larger than zero.

4 Seasonal ARMA Models

Seasonal ARMA models are often useful while modeling datasets having seasonal features
(e.g., monthly datasets). We say that {yt} is a seasonal ARMA(P , Q) process with period

s if it satisfies the difference equation Φ(Bs)(yt − µ) = Θ(Bs)εt where εt
i.i.d∼ N(0, σ2) and

Φ(Bs) = 1− Φ1B
s − Φ2B

2s − · · · − ΦPB
Ps

and
Θ(Bs) = 1 + Θ1B

2 + Θ2B
2s + · · ·+ ΘQB

Qs.

The seasonal ARMA(P , Q) model with period s is a special case of an ARMA(Ps, Qs)
model. However the seasonal model has P + Q + 1 (the 1 is for σ2) parameters while a
general ARMA(Ps, Qs) model will have Ps + Qs + 1 parameters. So the seasonal models
are much sparser.

Causal stationary solution exists when every root of Φ(zs) (equivalently, Φ(z)) has modulus
strictly larger than one.

The ACF and PACF of seasonal ARMA models are non-zero only at the seasonal lags
h = 0, s, 2s, 3s, . . . . At these seasonal lags, the ACF and PACF of these models behave just
as the case of the unseasonal ARMA model: Φ(B)Xt = Θ(B)εt.

5 Multiplicative Seasonal ARMA Models

For the co2 dataset (from the time series analysis textbook by Cryer and Chan), for the first
and seasonal differenced data, we saw that the sample autocorrelations seem nonnegligible
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at lags 0, 1, 11, 12, 13 and those at all other lags seem negligible. This behaviour can be
produced in a MA(13) model but that model will have 14 parameters possibly leading to
overfitting.

We can get a much more parsimonious model for this dataset by combining the MA(1)
model with a seasonal MA(1) model of period 12. Specifically, consider the model

yt = (1 + ΘB12)(1 + θB)εt =
(
1 + θB + ΘB12 + θΘB13

)
εt = εt + θεt−1 + Θεt−12 + θΘεt−13.

It is easy to check that model has the autocorrelation function:

ρ(1) =
θ

1 + θ2
and ρ(12) =

Θ

1 + Θ2

and

ρ(11) = ρ(13) =
θΘ

(1 + θ2)(1 + Θ2)
.

At every other lag h > 0, the autocorrelation ρX(h) equals zero. Based on this ACF (and the
sample ACF calculated from the data), this model can be suitable for the first and seasonal
differenced data in the co2 dataset.

More generally, we can combine, by multiplication, ARMA and seasonal ARMA models
to obtain models which have special autocorrelation properties with respect to seasonal lags.
The Multiplicative Seasonal Autoregressive Moving Average Model ARMA(p, q)
× (P , Q)s is defined via the difference equation:

Φ(Bs)φ(B)(yt − µ) = Θ(Bs)θ(B)εt.

The model we looked at above for the co2 dataset is ARMA(0, 1) × (0, 1)12.

Another example of a multiplicative seasonal ARMA model is ARMA(0, 1) × (1, 0)12
(this is same as MA(1)×AR(1)12)

(yt − µ)− Φ(yt−12 − µ) = εt + θεt−1.

The autocorrelation function of this model can be checked to be ρ(12h) = Φh for h ≥ 0 and

ρ(12h− 1) = ρ(12h+ 1) =
θ

1 + θ2
Φh for h = 0, 1, 2, . . .

and ρ(h) = 0 at all other lags.

When we have a dataset whose ACF and PACF show interesting patterns at seasonal lags,
consider using a multiplicative seasonal ARMA model. You may use the Statsmodels func-
tions arma acf and arma pacf to understand the autocorrelation and partial autocorrelation
functions of these models.

6 SARIMA Models

These models are obtained by combining differencing with multiplicative seasonal ARMA
models. These models are denoted by ARIMA(p, d, q) × (P , D, Q)s. This means that after
differencing d times and seasonal differencing D times (with period s), we get a multiplicative
seasonal ARMA model. In other words, {yt} is ARIMA(p, d, q) × (P , D, Q)s if it satisfies
the difference equation:

Φ(Bs)φ(B)∇Ds ∇d(yt − µ) = δ + Θ(Bs)θ(B)εt.
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Recall that ∇ds = (1−Bs)d and ∇d = (1−B)d denote the differencing operators.

In the co2 example, we wanted to use the model ARMA(0, 1) × (0, 1)12 to the seasonal
and first differenced data: ∇∇12Xt. In other words, we want to fit the SARIMA model
with nonseasonal orders 0, 1, 1 and seasonal orders 0, 1, 1 with seasonal period 12 to the
original co2 dataset. This model can be fit to the data using the function ARIMA with the
seasonal order argument.

7 Parameter Estimation in MA(1)

Estimating the parameters of ARMA (as well as ARIMA, SARIMA models) is much harder
than parameter estimation in AR models which was handled by standard regression (ordinary
least squares). We will not study this topic (and simply rely on the ARIMA function for fitting
these models to data). But here, I will just illustrate the difficulties involved in the simplest
case of an non-AR model: MA(1). Recall that the MA(1) model is given by

yt = µ+ εt + θεt−1 (2)

where εt
i.i.d∼ N(0, σ2). The joint density of y1, . . . , yn is multivariate normal with mean vector

m := (µ, . . . , µ)T and covariance matrix Σ where Σ equals the n × n matrix whose (i, j)th

entry is given by

Σ(i, j) =


σ2
(
1 + θ2

)
when i = j

σ2θ when |i− j| = 1
0 for all other (i, j)

The likelihood is therefore(
1√
2π

)n
(det Σ)−1/2 exp

(
−1

2
(y −m)′Σ−1(y −m)

)
where y is the n × 1 vector with components y1, . . . , yn. This is a function of the unknown
parameters µ, θ, σ which can be estimated by maximizing the logarithm of the likelihood.
The presence of Σ−1 makes this computationally expensive. Some (exact or approximate)
formula should be used for Σ−1 so that one does not need to invert an n × n matrix every
time the log-likelihood is to be computed.

An alternative approach is to try to write the likelihood (approximately) without using
an explicit Σ−1. One way of doing this is to use the connection to AR models. The MA(1)
model (2) yt = µ+θ(B)εt (with θ(B) = 1+θB) can be converted to an AR model as follows:

εt =
1

θ(B)
(yt − µ) =

1

1 + θB
(yt − µ) =

(
1− θB + θ2B2 − θ3B3 + . . .

)
(yt − µ)

so that
yt − θyt−1 + θ2yt−2 − θ3yt−3 + · · · = µ

1 + θ
+ εt

This requires the assumption that |θ| < 1. For this AR model, we can write the likelihood:(
1√
2πσ

)n
exp

(
− 1

2σ2

n∑
t=1

(
yt −

µ

1 + θ
− θyt−1 + θ2yt−2 − θ3yt−3 + . . .

)2
)
.

This formula involves y0, y−1, y−2, . . . for which we have no data. We can deal with them
by simply setting them to be zero (you can think of writing the conditional likelihood of the
data y1, . . . , yn given y0, y−1, y−2, . . . as zero). The likelihood then becomes:(

1√
2πσ

)n
exp

(
−S(µ, θ)

2σ2

)
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where

S(µ, θ) =

(
y1 −

µ

1 + θ

)2

+

(
y2 −

µ

1 + θ
− θy1

)2

+

(
y3 −

µ

1 + θ
− θy2 + θ2y1

)2

+ · · ·+(
yn −

µ

1 + θ
− θyn−1 + θ2yn−2 − · · ·+ (−1)n−1θn−1y1

)2

.

The MLEs of µ and θ are obtained by minimizing S(µ, θ):

µ̂, θ̂ minimize S(µ, θ).

This is a nonlinear minimization that can be done via some optimization routines in Python
(say in scipy). The MLE for σ is easily seen to be

σ̂ =
S(µ̂, θ̂)

n
.

For uncertainty quantification, we can take a Bayesian approach and combine the likelihood
with a prior on θ, µ, σ. Here is how this is done. I did not cover the following in lecture,
and this material is optional. It is included here just for completeness.

We assume that θ, µ, σ are independent with:

θ ∼ Unif(−1, 1) µ ∼ Unif(−C,C) log σ ∼ Unif(−C,C)

for a large C → ∞. Note that we have restricted the range of θ to (−1, 1) because we
assumed that |θ| < 1. The posterior is then

fµ,θ,σ|data(µ, θ, σ) ∝
(

1√
2πσ

)n
exp

(
−S(µ, θ)

2σ2

)
× 1

σ
I{−1 < θ < 1,−C < µ, log σ < C}

∝ σ−n−1 exp

(
−S(µ, θ)

2σ2

)
I{−1 < θ < 1,−C < µ, log σ < C}.

To obtain the posterior of µ and θ alone, we integrate the above with respect to σ. Integrating
from 0 to∞ (assuming C is large so e−C ≈ 0 and eC ≈ ∞), we obtain (as in Lecture Three):

fµ,θ|data(µ, θ) ∝
(

1

S(µ, θ)

)n/2
I{−1 < θ < 1,−C < µ < C}.

This posterior can be evaluated numerically over a grid of values of µ and θ and approximated
by the appropriate discrete distribution over the grid. Alternatively, we can approximate
this posterior by a suitable t-distribution by doing a Taylor expansion of S(µ, θ) near the
minimizer µ̂, θ̂. To illustrate this, let α = (µ, θ) and α̂ = (µ̂, θ̂). Taylor expansion for α near
α̂ gives

S(α) = S(α̂) + 〈∇S(α̂), α− α̂〉+ (α− α̂)T
(

1

2
HS(α̂)

)
(α− α̂)

= S(α̂) + (α− α̂)T
(

1

2
HS(α̂)

)
(α− α̂)

where we used ∇S(α̂) = 0 because α̂ minimizes S(α). Here HS(α̂) denotes the Hessian of
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S at α̂. Therefore

fµ,θ|data(µ, θ)

∝
(

1

S(µ, θ)

)n/2
I{−1 < θ < 1,−C < µ < C}

∝
(
S(α̂)

S(α)

)n/2
I{−1 < θ < 1,−C < µ < C}

=

(
S(α̂)

S(α̂) + (α− α̂)T
(
1
2HS(α̂)

)
(α− α̂)

)n/2
I{−1 < θ < 1,−C < µ < C}

=

 1

1 + (α− α̂)T
(

1
2S(α̂)HS(α̂)

)
(α− α̂)

n/2

I{−1 < θ < 1,−C < µ < C}

=

 1

1 + 1
n−2 (α− α̂)T

(
n−2
2S(α̂)HS(α̂)

)
(α− α̂)

n−2+2
2

I{−1 < θ < 1,−C < µ < C}.

Comparing the above with the formula:(
1

1 + 1
k (x−m)TΣ−1(x−m)

) k+p
2

for the p-variate t-density tk,p(µ,Σ), we see that (ignoring the indicator function I{−1 <
θ < 1,−C < µ < C})

α | data ∼ tn−2,2

(
α̂,

S(α̂)

n− 2

(
1

2
HS(α̂)

)−1)
.

This t-density can be used for uncertainty quantification of µ and θ.

8 Additional Optional Reading

1. Sections 3.5, 3.6 and 3.9 of Shumway-Stoffer 4th edition.
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