STAT 153 & 248 - Time Series Lecture Twenty Six

Spring 2025, UC Berkeley

Aditya Guntuboyina

May 01, 2025

1 RNN

RNN is given by

$$r_{0} = 0$$

$$s_{t} = W_{r}r_{t-1} + Wx_{t} + b$$

$$r_{t} = \sigma_{tanh}(s_{t})$$

$$\mu_{t} = \beta_{0} + \beta^{T}r_{t}$$
(1)

This formula can also be written as

$$r_{0} = 0$$

$$r_{t} = \sigma_{tanh}(W_{r}r_{t-1} + Wx_{t} + b)$$

$$\mu_{t} = \beta_{0} + \beta^{T}r_{t}$$
(2)

Here the activation function σ_{tanh} is the tanh activation function given by

$$\sigma_{\tanh}(u) := \frac{e^u - e^{-u}}{e^u + e^{-u}}.$$

The parameters now are W_r ($k \times k$ matrix), W ($k \times p$ matrix), b ($k \times 1$ vector), β_0 (scalar) and β ($k \times 1$ vector).

In the last lecture, we saw that RNNs have a "lack of long memory" problem. This means that even though r_t technically depends on all of x_t, x_{t-1}, \ldots , in practice, it is mainly controlled by x_u for u close to t. This problem is fixed, to some extent, by GRUs and LSTMs.

2 GRU (Gated Recurrent Unit)

GRU is

$$r_{0} = 0$$

$$g_{t} = \sigma_{\text{sigmoid}}(W_{r}^{g}r_{t-1} + W^{g}x_{t} + b^{g})$$

$$z_{t} = \sigma_{\text{sigmoid}}(W_{r}^{z}r_{t-1} + W^{z}x_{t} + b^{z})$$

$$\tilde{r}_{t} := \sigma_{\text{tanh}}(W_{r}(r_{t-1} \odot g_{t}) + Wx_{t} + b)$$

$$r_{t} = z_{t} \odot r_{t-1} + (1 - z_{t}) \odot \tilde{r}_{t}$$

$$\mu_{t} = \beta_{0} + \beta^{T}r_{t}.$$
(3)

 z_t is called the update gate while g_t is called the reset gate. The unknown parameters in this model (which need to be estimated from the data) are $W_r^g, W^g, b^g, W_r^z, W^z, b^z, W_r, W, b, \beta_0, \beta$.

Because of the presence of z_t , it is possible for r_t to be quite close to r_{t-1} for many time points t. This allows r_t to have a relatively long memory.

3 LSTM (Long Short Term Memory)

LSTM is another modification to the basic RNN for enabling long memory. It also uses gates and has one more gate compared to the GRU. Instead of a recursion directly between r_{t-1} and r_t , the LSTM recursions are between the pairs $(s_{t-1}, r_{t-1}) \rightarrow (s_t, r_t)$:

$$r_{0} = 0 \text{ and } s_{0} = 0$$

$$f_{t} = \sigma_{\text{sigmoid}}(W_{r}^{f}r_{t-1} + W^{f}x_{t} + b^{f})$$

$$i_{t} = \sigma_{\text{sigmoid}}(W_{r}^{i}r_{t-1} + W^{i}x_{t} + b^{i})$$

$$o_{t} = \sigma_{\text{sigmoid}}(W_{r}^{o}r_{t-1} + W^{o}x_{t} + b^{o})$$

$$\tilde{r}_{t} := \sigma_{\text{tanh}}(W_{r}r_{t-1} + Wx_{t} + b)$$

$$s_{t} = f_{t} \odot s_{t-1} + i_{t} \odot \tilde{r}_{t}$$

$$r_{t} = o_{t} \odot \sigma_{\text{tanh}}(s_{t})$$

$$\mu_{t} = \beta_{0} + \beta^{T}r_{t}$$

$$(4)$$

 f_t is called the forget gate, i_t is called the input gate and o_t is called the output gate. The presence of these gates allow r_t to draw information from x_u even for u quite far from t.

The unknown parameters in this model are $W_r^f, W^f, b^f, W_r^i, W^i, b^i, W_r^o, W^o, b^o, W_r, W, b, \beta_0, \beta$. The LSTM unit is all the equations in (4) excluding the last linear layer $\mu_t = \beta_0 + \beta^T r_t$:

$$r_{0} = 0 \text{ and } s_{0} = 0$$

$$f_{t} = \sigma_{\text{sigmoid}}(W_{r}^{f}r_{t-1} + W^{f}x_{t} + b^{f})$$

$$i_{t} = \sigma_{\text{sigmoid}}(W_{r}^{i}r_{t-1} + W^{i}x_{t} + b^{i})$$

$$o_{t} = \sigma_{\text{sigmoid}}(W_{r}^{o}r_{t-1} + W^{o}x_{t} + b^{o})$$

$$\tilde{r}_{t} := \sigma_{\text{tanh}}(W_{r}r_{t-1} + Wx_{t} + b)$$

$$s_{t} = f_{t} \odot s_{t-1} + i_{t} \odot \tilde{r}_{t}$$

$$r_{t} = o_{t} \odot \sigma_{\text{tanh}}(s_{t})$$

$$(5)$$

The output of the LSTM unit is r_t . In PyTorch (see https://pytorch.org/docs/stable/ generated/torch.nn.LSTM.html), the notation used for the LSTM unit differs slightly from (5). The LSTM PyTorch unit is given by:

$$i_{t} = \sigma(W_{ii} x_{t} + b_{ii} + W_{hi} h_{t-1} + b_{hi}),$$

$$f_{t} = \sigma(W_{if} x_{t} + b_{if} + W_{hf} h_{t-1} + b_{hf}),$$

$$g_{t} = \tanh(W_{ig} x_{t} + b_{ig} + W_{hg} h_{t-1} + b_{hg}),$$

$$o_{t} = \sigma(W_{io} x_{t} + b_{io} + W_{ho} h_{t-1} + b_{ho}),$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t}$$

$$h_{t} = o_{t} \odot \tanh(c_{t}),$$
(6)

where $\sigma = \sigma_{\text{sigmoid}}$.

Both (5) and (6) implement the same LSTM update, but they differ in notation. Our r_t is named h_t in PyTorch, and our s_t is named c_t in PyTorch. h_t is referred to as the hidden state and c_t is referred to as the cell state.

The three gates have the same notation in both formulae: forget f_t , input i_t , output o_t . The candidate or potential feature vector \tilde{r}_t in (5) is denoted by g_t in (6). In (6), there are two bias vectors in each of the formulae for i_t, f_t, g_t, o_t . We combined these to one bias vector in (5). Other than these notational differences, the formulae (5) and (6) are identical.

4 Additional Optional Reading

- Check out the PyTorch documentation for LSTM, GRU and RNN (https://pytorch. org/docs/stable/generated/torch.nn.LSTM.html, https://pytorch.org/docs/stable/ generated/torch.nn.GRU.html and https://pytorch.org/docs/stable/generated/ torch.nn.RNN.html)
- 2. This is a popular blog post (by Andrej Karpathy) on how RNNs can be used for many interesting tasks in NLP: https://karpathy.github.io/2015/05/21/rnn-effectiveness/.