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In this lecture, we shall discuss stationarity of AR models. The answer is a bit complicated.
Let us start with AR(1) and then consider AR(p) for p ≥ 2.

1 Stationarity of AR(1)

The AR(1) equation is
yt = φ0 + φ1yt−1 + εt (1)

One issue is that this equation does not fully specify yt and there can be multiple processes
{yt} that satisfy (1):

1. Suppose y0 = 10. Define y1, y2, y3, . . . recursively via (1). Also define y−1, y−2, y−3, . . .
recursively via the following equation for t = 0,−1,−2, . . . :

yt−1 = −φ0
φ1

+
yt
φ1
− εt
φ1

(2)

Note that (2) is just a restatement of (1) obtained by rearranging (1) with yt−1 on the
left hand side. The resulting time series model will then clearly satisfy (1). However
it will not be stationary because:

var(y0) = 0 and var(y1) = var(φ0 + φ1y0 + ε1) = var(φ0 + ε1) = var(ε1) = σ2.

2. Suppose |φ1| < 1 and define

yt =
φ0

1− φ1
+

∞∑
j=0

φj1εt−j . (3)

The summation in the right hand side above is an infinite summation, and hence we
need to address convergence issues. Because |φ1| < 1, the terms φj1 rapidly decay to 0

as j increases. This ensures that
∑∞

j=0 φ
j
1εt−j is well-defined.
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It is easy to check that (3) satisfies (1) because:

yt =
φ0

1− φ1
+
∞∑
j=0

φj1εt−j

=
φ1

1− φ1
+ εt + φ1εt−1 + φ21εt−2 + φ31εt−3 + . . .

=
φ1

1− φ1
+ εt + φ1

(
εt−1 + φ1εt−2 + φ21εt−3 + . . .

)
=

φ1
1− φ1

+ εt + φ1

(
yt−1 −

φ0
1− φ1

)
= φ0 + φ1yt−1 + εt.

It is also true that (3) is a stationary model. This is because

Eyt =
φ0

1− φ1
for all t

and, for h ≥ 0,

cov(yt, yt+h) = cov

 φ0
1− φ1

+

∞∑
j=0

φj1εt−j ,
φ0

1− φ1
+

∞∑
k=0

φk1εt+h−k


= cov

 ∞∑
j=0

φj1εt−j ,
∞∑
k=0

φk1εt+h−k

 =
∞∑
j=0

∞∑
k=0

φj+k
1 cov (εt−j , εt+h−k)

Because cov (εt−j , εt+h−k) is non-zero (equal to σ2) only when t − j = t + h − k i.e.,
k = j + h, we get

cov(yt, yt+h) = σ2
∞∑
j=0

φ2j+h
1 = σ2

φh1
1− φ21

.

This clearly shows that {yt} is stationary with ACVF and ACF given by:

γ(h) = σ2
φ
|h|
1

1− φ21
and ρ(h) =

γ(h)

γ(0)
= φ

|h|
1 .

We have thus proved that (3) is a stationary time series model that satisfies the AR(1)
equation (1) when |φ1| < 1. In fact, it turns out that (3) is the only stationary solution
of (1) when |φ1| < 1 (I am skipping proof of this). Thus (3) is the unique stationary
AR(1) model when |φ1| < 1. The model (3) when |φ1| < 1 is known as the causal
stationary AR(1) model. Causal refers to the fact that yt is fully determined by
present and past values of {εt}.

3. Suppose |φ1| > 1 and define

yt =
φ0

1− φ1
−
∞∑
j=1

εt+j

φj1
. (4)

Note that yt is well-defined because the infinite sum above has the coefficients φ−j1

which decay rapidly as |φ1| > 1. It is easy to check that (4) also satisfies the AR(1)
equation (1) and is stationary. In fact, it is the unique stationary AR(1) for |φ1| > 1.
The model (4) is called the non-causal, stationary AR(1). It is non-causal because
yt depends on the future values of εt+1, εt+2, . . . .
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For the model (4), it is certainly not true that εt is independent of yt−1, yt−2, yt−3, . . . .
Recall that we used this estimation while writing the likelihood for AR(1) for parameter
estimation. Thus, if we attempt to estimate the parameters φ0, φ1, σ of (4) using our
AR-parameter estimation technique, we will get incorrect an estimate of φ1 (for more
details, see Example 3.3 and 3.4 in the Shumway-Stoffer book 4th edition).

To summarize the above discussion, there exist many non-stationary AR(1) time series
models. When |φ1| < 1, there exists a unique stationary AR(1) model that is given by the
formula (3), this is called the causal, stationary AR(1) model. When |φ1| > 1, there also
exists a unique stationary AR(1) model that is given by the formula (4), this is called the
non-causal, stationary AR(1) model.

When |φ1| = 1 (i.e., φ1 = 1 or φ1 = −1), neither of the two formulae (3) and (4) are
meaningful (i.e., the infinite series do not converge). Here it turns out that there is no
stationary AR(1) model. To see this, consider the case φ1 = 1 (the case φ1 = −1 is similar)
where

yt = φ0 + yt−1 + εt

This implies that for every t ≥ 1

yt − y0 = tφ0 + ε1 + · · ·+ εt

When φ0 6= 0, clearly yt and y0 have different means (because Eyt = Ey0 + tφ0) so there is
no stationarity. But even if φ0 = 0, we have

var(yt − y0) = var(ε1 + · · ·+ εt) = tσ2

which approaches ∞ as t ↑ ∞. But if {yt} were stationary, we would have

var(yt − y0) ≤ 2var(yt) + 2var(y0) ≤ constant.

Thus there are two kinds of AR(1): stationary and non-stationary. Stationarity is only
possible when |φ1| 6= 1. There are also two kinds of stationary AR(1) models. When |φ1| < 1,
the stationary AR(1) model has the formula (3); this is the causal kind of stationarity. When
|φ1| > 1, the stationary AR(1) model has the formula (4); this is the non-causal kind of
stationarity.

2 On the formulae for stationary AR(1)

Above, we first wrote down the formulae (3) and (4) for stationary AR(1) and then verified
that they indeed satisfy the AR(1) equation. It turns that these formulae can be derived
by “solving” the AR(1) equation (1) for yt in terms of {εt}. We shall present this solution
method here. We will not present a rigorous justification for this method (which can be found,
for example, in the book “Time Series: theory and methods” by Brockwell and Davis).

Before describing this solution method, we need to introduce the backshift notation.

2.1 Backshift Notation

A convenient piece of notation used while working with AR and MA models is the Backshift
notation. Let B denote the backshift operator defined by

Byt = yt−1, B
2yt = yt−2, B

3yt = yt−3, . . .
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and similarly
Bεt = εt−1, B

2εt = εt−2, B
3εt = εt−3, . . . .

Also let I denote the identity operator: Iyt = yt. More generally, we can define polynomial
functions of the Backshift operator by, for example,

(I +B + 3B2)yt = Iyt +Byt + 3B2yt = yt + yt−1 + 3yt−2.

In general, for every polynomial f(z), we can define f(B). One can even extend this no-
tation to negative powers of B which correspond to forward shifts. For example, B−1yt =
yt+1, B

−5yt = yt+5 and (B3 + 9B−2)yt = yt−3 + 9yt+2 etc.

In this notation, the defining equation yt = φ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt for
the AR(p) model can be written as φ(B)yt = φ0 + εt for the polynomial φ(z) = 1 − φ1z −
φ2z

2 − · · · − φpzp.

The defining equation yt = εt + θεt−1 for the MA(1) model can be written as yt = θ(B)εt
for the polynomial θ(z) = 1 + θ1z.

The defining equation yt = εt + θ1εt−1 + · · · + θqεt−q for the MA(q) model becomes yt =
θ(B)εt for the polynomial θ(z) = 1 + θ1z + . . . θqz

q.

2.2 AR(1) solutions using Backshift Calculus

The two stationary solutions (3) and (4) to the AR(1) difference equation (1) for the two
cases |φ1| < 1 and |φ1| > 1 can also be derived using formal operations that are sometimes
known as Backshift Calculus. This is described in this section. First note that (1) can be
written as

φ(B)yt = φ0 + εt where φ(z) = 1− φ1z.
Thus we can formally write

yt =
1

φ(B)
(φ0 + εt) .

Using
1

φ(z)
=

1

1− φ1z
= 1 + φ1z + φ21z

2 + φ31z
3 + . . . ,

we obtain

yt =
(
I + φ1B + φ21B

2 + . . .
)

(φ0 + εt)

=
(
I + φ1B + φ21B

2 + . . .
)
φ0 +

(
I + φ1B + φ21B

2 + . . .
)
εt

=
(
1 + φ1 + φ21 + . . .

)
φ0 +

∞∑
j=0

φj1εt−j =
φ0

1− φ1
+
∞∑
j=0

φj1εt−j

which gives (3).

When |φ1| > 1, the process (3) does not make sense. So we expand 1/φ(z) in the following
alternative way:

1

φ(z)
=

1

1− φ1z

=
−1

φ1z

(
1− 1

φ1z

)−1
=
−1

φ1z

(
1 +

1

φ1z
+

1

φ21z
2

+ . . .

)
= −z

−1

φ1
− z−2

φ21
− z−3

φ31
− . . . .
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We thus get

yt =
1

φ(B)
(φ0 + εt)

=

(
−B

−1

φ1
− B−2

φ21
− B−3

φ31
− . . .

)
(φ0 + εt) =

φ0
1− φ1

−
∞∑
j=1

εt+j

φj1

which gives (4). This formal method is called Backshift Calculus and it works for higher
order AR models as well.

3 Stationary and Causality for AR(p), p ≥ 2

Similar to AR(1), it is possible to characterize parameter regimes which ensure existence of
stationary (and also causal/non-causal) solutions of AR(p) for p ≥ 1. Recall that the AR(p)
model is given by the equation:

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + εt. (5)

In terms of the Backshift Notation, we can write the model as:

φ(B)yt = φ0 + εt

where φ(B) is the result of the following polynomial applied to the Backshift operator:

φ(z) := 1− φ1z − φ2z2 − · · · − φpzp. (6)

This polynomial is called the AR(p) polynomial or the AR(p) characteristic polynomial. This
polynomial will have p roots z1, . . . , zp. Some of these roots may be complex.

1. Suppose all the roots zi have modulus distinct from one: |zi| 6= 1 for every i. Then
there exists a unique stationary solution to (5). Backshift calculus can be used to write
the stationary solution yt explicitly in terms of {εt}. We shall see how to do this in
the next lecture.

2. Suppose all the roots zi have modulus strictly larger than one: |zi| > 1 for every i.
Then the unique stationary solution is of the form yt = µ+ψ0εt+ψ1εt−1+ψ2εt−j+· · · =
µ +

∑∞
j=0 ψjεt−j , for some µ and {ψj , j ≥ 0}. In other words, only the current and

past εt values (εt, εt−1, . . . ) determine yt. Therefore, this stationary solution is causal.

3. Suppose at least one of the roots zi has modulus strictly smaller than 1 while all other
roots have moduli strictly larger than 1. In this case, the unique stationary solution
will involve εt-terms from both in the past and future: yt = µ +

∑∞
j=−∞ ψjεt−j (note

that the sum is now going from −∞ to ∞). This stationary solution is non-causal.

4. Suppose at least one root zi has modulus exactly equal to 1. Then there is no stationary
solution to (5).

When p = 1, the AR(1) polynomial is φ(z) = 1 − φ1z with root 1/φ1. So the root having
magnitude more than 1 is equivalent to |φ1| < 1. Then the above assertions are equivalent
to the assertions made in the previous two sections for AR(1).

We will see more details and examples in the next lecture.
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4 Additional Optional Reading

1. Sections 3.1, 3.2, 3.3 of Shumway-Stoffer 4th edition.
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