
STAT 153 & 248 - Time Series
Lecture Twenty Four

Spring 2025, UC Berkeley

Aditya Guntuboyina

April 24, 2025

The last topic in this course is Recurrent Neural Networks (RNNs). In order to motivate
RNNs, let us first recap some models that we have already studied in this class.

1 Regression with t as covariate

The simplest and the first model that we studied was the linear regression model:

yt = β0 + β1t+ εt with εt
i.i.d∼ N(0, σ2). (1)

We then studied at nonlinear regression. One way to make the right hand side of (1) nonlinear
in t is to introduce terms involving (t− c)+ for certain knots c:

yt = β0 + β1t+ β2(t− c1)+ + · · ·+ βk+1(t− ck)+ + εt. (2)

Here (t− c)+ is the positive part function applied to t− c1. We shall also use the notation
ReLU and σ(·) to denote this function (please do not confuse the function σ(·) with the
standard deviation σ of εt; we shall use the same notation for both but they can be easily
distinguished from the context):

σ(u) = ReLU(u) = u+ := max(u, 0).

The unknown parameters in (2) are β0, . . . , βk+1, c1, . . . , ck and σ.

The model (2) is also a linear model but it is linear in the modified variables 1, t, (t −
c1)+, . . . , (t − ck)+ (and nonlinear in the original variable t). The vector of these modified
variables:

(1, t, (t− c1)+, . . . , (t− ck)+)T

can be called the feature vector. The model is a linear function of the feature vectors.

We now rewrite the model (2) in a slightly different form. The time t represents the
covariate xt here, so we write xt = t. We shall remove the term t as it is covered by
t = (t− c)+ for c = 0 (note that 1 ≤ t ≤ n). We also write µt for the mean of yt. We shall
also use rt to denote the feature vector:

rt = (σ(xt − c1), . . . , σ(xt − ck))T

and st to denote:
st = (xt − c1, . . . , xt − ck)T .

1



With these changes, the model (2) becomes:

xt = t

st = (xt − c1, . . . , xt − ck)T

rt = σ(st)

µt = β0 + βT rt

yt = µt + εt.

(3)

In words, the univariate covariate xt (which is simply t) is first converted to the k× 1 vector
st in a linear fastion. Then the nonlinear function σ(·) is applied to st (here σ(·) is applied
separately to each coordinate of st) to generate the feature vector rt. Then µt is a linear
function of rt which serves as the mean to yt.

2 AutoRegression

We also studied autoregression models where the covariates are simply lagged values of yt.
The simplest of these models is AR(1) where xt = yt−1. This is simply (1) with t replaced
by xt = yt−1:

yt = β0 + β1xt + εt with εt
i.i.d∼ N(0, σ2).

One can create a nonlinear version of AR(1) by simply using (3) with xt = yt−1. We shall
refer to this as Nonlinear AutoRegression of order 1: NAR(1) (there are many nonlinear
autoregression models and this one is only one of them):

xt = yt−1

st = (xt − c1, . . . , xt − ck)T

rt = σ(st)

µt = β0 + βT rt

yt = µt + εt.

(4)

Now let us consider the case of AR(p) for p ≥ 1. The usual AR(p) model is simply:

xt = (yt−1, . . . , yt−p)
T

µt = β0 + βTxt

yt = µt + εt.

(5)

Observe that (5) can be written in compressed form as simply yt = β0 + β1yt−1 + · · · +
βpyt−p + εt which is the usual form of AR(p).

What is a natural nonlinear version of (5)? Put another way, what is a good extension of
(4) for p ≥ 1? There are multiple ways of obtaining these versions. Looking at the structure
of (4), clearly xt = yt−1 will be replaced by xt = (yt−1, . . . , yt−p)

T . The next line gives the
formula for st. This would need to be changed because xt is no longer a scalar. One way to
do this would be to write one version of the formula for st in (4) for each component of xt.
This would result in:

xt = (yt−1, . . . , yt−p)
T

st = (xt1 − c(1)1 , . . . , xt1 − c(1)k , xt2 − c(2)1 , . . . , xt2 − c(2)k , . . . , xtp − c(p)1 , . . . , xtp − c(p)k )T

rt = σ(st)

µt = β0 + βT rt

yt = µt + εt.

(6)

2



Here xt1 = yt−1, . . . , xtp = yt−p denote the components of xt. With this choice of st, note
that µt becomes

µt = β0 + βT rt = β0 + βTσ(st) = β0 +

p∑
j=1

gj(xtj) where gj(x) :=

k∑
i=1

βi,jσ(xtj − c(i)j ).

In other words, we are fitting an additive model for yt in terms of the covariates xt1 =
yt−1, . . . , xtp = yt−p. Additive models are popular in regression but they do not incorporate
any interactions between the covariates. For example, if the true model generating the data is
yt = 0.5yt−1yt−2+εt, the additive model is unlikely to work well (because (x1, x2) 7→ 0.5x1x2
is not an additive function of x1 and x2).

Instead of using the additive model in (6), we shall use the following model as NAR(p)
(Nonlinear AutoRegression of order p). This is obtained by changing the second line of (6)
to be an arbitrary linear function of xt:

xt = (yt−1, . . . , yt−p)
T

st = Wxt + b

rt = σ(st)

µt = β0 + βT rt

yt = µt + εt.

(7)

Here W is a k × p matrix and b is a k × 1 vector. The parameters in this model are the
entries of the matrix W , the vector b, the coefficients β0 and the components of β and finally
the noise standard deviation σ.

In neural network terminology, the model (7) is called a single-hidden layer neural
network because it first applies a linear transformation to the input xt (via st = Wxt + b),
then passes the result through the nonlinear activation function σ to get rt, which forms the
hidden layer. The output µt is then computed as a linear function of rt (via µt = β0 + βT rt)
and noise εt is added to explain the discrepancy between yt and µt. The presence of one
nonlinear transformation between the input xt and the output µt, combined with otherwise
linear operations, is exactly the structure of a single-hidden layer neural network.

To sum up, we take the single-hidden layer neural network model (7) to be our nonlinear
generalization of AR(p).

Note that (7) can also be treated as a linear regression model but the linearity is in terms
of the feature vector rt (not in terms of the original covariate xt). We shall refer to rt as the
feature vector at time t, it is also common to refer to it as the hidden layer output at time t.

3 Recurrent Neural Networks (RNNs)

We are now ready to define an RNN. RNN will involve one modification of the second
equation in (7). Specifically, we will take st to be a linear function not only of xt but also
of the feature vector rt−1 at the previous time. This leads to (the difference relative to (7)

3



is highlighted in blue below)

xt = (yt−1, . . . , yt−p)
T

st = Wrrt−1 +Wxt + b

rt = σ(st)

µt = β0 + βT rt

yt = µt + εt.

(8)

In Model (7), the hidden layer output rt is computed purely from the current input xt
through a linear transformation (st) and the nonlinearity σ(·), so rt depends only on xt. In
the RNN (8) however, the computation of rt involves not just the current xt but also the
previous hidden layer output rt−1 through an additional linear term Wrrt−1. This means
that in the second model, the feature vector rt is influenced both by the current input and
by the feature vector from the previous step, whereas in the first model, it is influenced only
by the current input.

Model (7) is a standard single-hidden layer feedforward neural network where the hidden
layer rt depends only on the current input. In contrast, the second model RNN (8) introduces
a recurrent connection by adding a term Wrrt−1 to the hidden layer input, meaning that
rt now depends not only on the current input xt but also on the previous hidden state rt−1.
This recurrence creates a form of memory across time steps, making the second model a
recurrent neural network (RNN), while the first model has no memory and treats each input
independently.

The matrix Wr is k×k so it is a square matrix. The parameters now include Wr,W, b, β0, β
(along with the noise standard deviation σ). Typically k will be larger than p. Model (8)
also requires an initialization of rt usually done by r0 = 0.

In the model (7), the feature vector rt depends only on xt. On the other hand, in (8), rt
depends on all the inputs: xt, xt−1, . . . , x1 (or xt, xt−1, . . . , xp+1 in case xt = (yt−1, . . . , yt−p)

T

is not defined for t ≤ p; below we assume that the inputs xt are defined for all t = 1, 2, . . .
without loss of generality; in a time series setting, this can be arranged by rearranging the
time index). To see how rt depends on xt, xt−1, . . . , note that

r1 = σ(Wx1 + b) because r0 = 0

r2 = σ (Wrσ(Wx1 + b) +Wx2 + b) ,

r3 = σ (Wrσ (Wrσ(Wx1 + b) +Wx2 + b) +Wx3 + b) ,

r4 = σ(Wrσ (Wrσ (Wrσ(Wx1 + b) +Wx2 + b) +Wx3 + b) +Wx4 + b). (9)

From the above, rt clearly depends on all of x1, . . . , xt. But the strength of the dependence
of rt on xs varies with s.

RNNs can have stability issues because the formula for rt involves the product of a possibly
large number of terms where the matrix Wr appears multiple times (e.g., see the formula (9)
for r4 above). Imagining Wr to be a scalar (just for the sake of making this argument), then
two things can happen: it can be strictly larger than 1 in magnitude or strictly smaller than
1 in magnitude (it cannot be exactly equal to 1 in magnitude because these parameters are
learning by a training algorithm and it is unlikely that this algorithm will output an estimate
of Wr that is exactly equal to 1 in magnitude). If Wr is strictly larger than 1 in magnitude,
then multiple appearances of Wr in products will blow them up, causing rt to explode for
moderate and large t. On the other hand, if Wr is strictly smaller than 1 in magnitude, then

4



the products will be very small, and this leads to rt depending mainly on xs for which s is
close to t (the implication is that RNNs cannot capture long-range dependence). When Wr

is a matrix (instead of a scalar), this argument will still hold but, instead of magnitude, we
need to use the spectral radius of Wr (spectral radius of a square matrix is defined as the
largest magnitude of any eigenvalue).

The nonlinear activation function σ(·) also appears multiple times in the formula for rt,
(see again the formula (9) for r4). To solve stability problems, it is customary in RNNs
to take σ to be the hyperbolic tangent function (instead of ReLU). The hyperbolic tangent
function is given by

σ(u) :=
eu − e−u

eu + e−u
.

Unlike the ReLU function (which can take arbitrarily large positive values), the hyperbolic
tangent activation function always takes values between −1 and 1. This helps the RNN be
more stable.

We will discuss the RNNs more next week (along with related models such as GRU and
LSTM).

4 Parameter Estimation via PyTorch

Given a time series dataset y1, . . . , yn, we estimate the parameters of these models simply
by least squares. Specifically the parameters are estimated by minimizing:

n∑
t=1

(yt − µt)2. (10)

Note that µt depends on the parameters W,Wr . . . so that these parameters need to be
chosen so that the sum of squares above is as small as possible. Minimization of (10) is
done in an iterative fashion using a simple algorithm such as gradient descent. This requires
calculation of gradients which is done efficiently in PyTorch. This also requires an initial
value of the parameters.

5 Additional Optional Reading

1. Read the wikipedia article for Recurrent Neural Networks: https://en.wikipedia.

org/wiki/Recurrent_neural_network. Our RNN model (8) is referred to as the
Elman network in this wiki article.

2. For more on RNNs, I recommend the paper https://arxiv.org/abs/1808.03314.

5

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://arxiv.org/abs/1808.03314

	Regression with t as covariate
	AutoRegression
	Recurrent Neural Networks (RNNs)
	Parameter Estimation via PyTorch
	Additional Optional Reading

