
STAT 153 & 248 - Time Series
Lecture Twenty Five

Spring 2025, UC Berkeley

Aditya Guntuboyina

April 29, 2025

1 Nonlinear AutoRegression

In the last lecture, we started discussing nonlinear forms of autoregression for an observed
time series y1, . . . , yn. For each t, we take xt = (yt−1, . . . , yt−p)

T for some integer p ≥ 1. xt
can be called the covariate at time t corresponding to the response value yt. In the context
of recurrent neural network models, xt is referred to as the input at time t.

The usual (linear) autoregression AR(p) model corresponds to:

µt = β0 + βTxt. (1)

The loss function is
∑

t(yt−µt)2, and the parameters β0, β are estimated by minimizing the
loss.

In nonlinear autoregression, we change the formula (1) into a nonlinear function of xt.
When p = 1, one simple nonlinear AR(1) model is:

µt = β0 + β1xt + β2(xt − c1)+ + · · ·+ βk+1(xt − ck)+.

We simplify this slightly by dropping xt (because xt = (xt− c0)+ + c0 for all t provided c0 is
smaller than all the observed values of xt; we will not lose anything by dropping xt). This
leads to

µt = β0 + β1(xt − c1)+ + · · ·+ βk(xt − ck)+.

We rewrite this equation using the following notation:

st = (xt − c1, . . . , xt − ck)T

rt = σ(st)

µt = β0 + βT rt.

(2)

st is a linear function of xt which maps the scalar xt to the k× 1 vector st. σ(·) denotes the
ReLU function applied pointwise to the input. So rt is obtained by apply the ReLU function
to each coordinate of st. Finally µt is a linear function of rt (we shall sometimes refer to µt
as the output corresponding to the input xt).

1



When p ≥ 1, there are multiple ways of generalizing (2). One simple way is to consider

the following “additive” model (below x
(i)
t = yt−i denotes the ith coordinate of xt)

s
(i)
t = (x

(i)
t − c

(i)
1 , . . . , x

(i)
t − c

(i)
k )T for 1 ≤ i ≤ p

st =


s
(1)
t

·
·
·
s
(p)
t


rt = σ(st)

µt = β0 + βT rt

(3)

This is called an additive model because µt can be written as an additive sum of separate

functions of x
(i)
t for i = 1, . . . , p. A different (i.e., non-additive) generalization of (2) is the

single-hidden layer neural network defined as follows.

st = Wxt + b

rt = σ(st)

µt = β0 + βT rt

(4)

Here st is again k × 1, W is k × p and b is p × 1. We shall refer to (4) as the NonLinear
AR model of order p. The total number of parameters here is kp+ k + k + 1 = kp+ 2k + 1.
When p increases by 1, the number of parameters in (4) increases by k. On the other hand,
in the usual (linear), AR(p) model, the number of parameters increases only by 1 when p
increases by 1. So these models have a tendency to become high-dimensional faster than the
linear AR(p) models.

2 Recurrent Neural Network (RNN)

RNN is given by

r0 = 0

st = Wrrt−1 +Wxt + b

rt = σtanh(st)

µt = β0 + βT rt

(5)

This formula can also be written as

r0 = 0

rt = σtanh(Wrrt−1 +Wxt + b)

µt = β0 + βT rt

(6)

Here the activation function σtanh is the tanh activation function given by

σtanh(u) :=
eu − e−u

eu + e−u
.

The parameters now are Wr (k × k matrix), W (k × p matrix), b (k × 1 vector), β0 (scalar)
and β (k × 1 vector).

2



In (6), rt depends on all of xu, u ≤ t. To see this, just note (below σ = σtanh)

r1 = σ(Wx1 + b) because r0 = 0

r2 = σ (Wrσ(Wx1 + b) +Wx2 + b) ,

r3 = σ (Wrσ (Wrσ(Wx1 + b) +Wx2 + b) +Wx3 + b) ,

r4 = σ(Wrσ (Wrσ (Wrσ(Wx1 + b) +Wx2 + b) +Wx3 + b) +Wx4 + b). (7)

From the above, rt clearly depends on all of x1, . . . , xt. But the strength of the dependence
of rt on xs varies with s. To see this, observe that

∂rt
∂xu

= σ′(st)Wrσ
′(st−1)Wr . . . σ

′(su+1)Wrσ
′(su)W for u ≤ t. (8)

Here ∂rt
∂xu

denotes the k × p Jacobian Matrix of derivatives of rt with respect to xu. On
the right hand side in (8), σ′(st) should be interpreted as k × k diagonal matrices whose
diagonal entries are obtained by applying the σ′(u) = d

duσ(u) function to each element of st
(σ′(st−1), . . . are similarly defined as k × k diagonal matrices).

As a concrete example,

∂r4
∂x4

= σ′(s4)W
∂r4
∂x3

= σ′(s4)Wrσ
′(s3)W

∂r4
∂x2

= σ′(s4)Wrσ
′(s3)Wrσ

′(s2)W

∂r4
∂x1

= σ′(s4)Wrσ
′(s3)Wrσ

′(s2)Wrσ
′(s1)W

Note that these gradient formulae are with respect to inputs xu, and not with respect to
the parameters (which is crucial to parameter estimation). In the formula (8), it is clear
that when u is much smaller than t, many more terms appear in the right hand side of (8)
compared to the case when u is closer to t. Note here that σ is the tanh activation function:

σ(u) =
eu − e−u

eu + e−u
so that σ′(u) = 1− σ2(u) ∈ (0, 1].

Thus each σ′(·) term will add a fractional multiplier to ∂rt/∂xu. The number of these
fractional multipliers will increase as u decreases in (8).

Further the matrix Wr also plays a key role in (8). For the model equation in (5) to be
stable, Wr needs to have spectral radius (defined as the largest modulus of any eigenvalue)
to be strictly smaller than one. In that case, each additional Wr multiplier will bring the
whole term down, leading to ∂rt/∂xu being small when u is much smaller than t.

This points to the following shortcoming of RNNs that more sophisticated models such as
GRUs and LSTMs attempt to fix. We want rt to represent the ideal summary of x1, . . . , xt
that is relevant for the output yt. However, in an RNN, rt effectively only depends on those
inputs xu which are somewhat close to t. In this sense, the RNN can be thought of as not
having a very long memory.

This “lack of long memory” problem with RNNs can be fixed by use of GRUs and LSTMs.

3 GRU (Gated Recurrent Unit)

Consider again the RNN formula (6). The basic problem with this is that rt depends on rt−1
through the term Wrrt−1. If Wr is a matrix with spectral radius less than 1 (which it needs

3



to be for stability purposes), then the multiplier Wrrt−1 can be thought of as “reducing”
rt−1 by a factor of Wr. If this formula is applied repeatedly, then very soon the dependence
of rt on ru will be very small. In order to avoid this, one needs to prevent rt from depending
on rt−1 only through Wrrt−1.

This leads to the following idea. First construct a potential version r̃t of rt in the same
way as (6):

r̃t = σ(Wrrt−1 +Wxt + b). (9)

This r̃t only depends on rt−1 through Wrrt−1. The two natural options for rt now are:

1. rt = r̃t: in this case, we are back to the RNN (6).

2. rt = rt−1: in this case, rt is exactly equal to rt−1, which means that the current input
xt is ignored.

The idea behind GRU is to take a “convex-like” combination of these two options in the
following way:

rt = ztrt−1 + (1− zt)r̃t.

This would be exactly a convex combination if zt were a scalar in the interval [0, 1]. But we
allow zt to be a vector interpreting the multiplication as pointwise. Thus it is better to write

rt = zt � rt−1 + (1− zt)� r̃t. (10)

The next thing to specify zt. In GRU, we take

zt = σsigmoid(W z
r rt−1 +W zxt + bz) where σsigmoid(u) :=

1

1 + e−u
. (11)

Because σsigmoid takes values between 0 and 1, the above formula ensures that the compo-
nents of zt take values in [0, 1] so that (10) represents a convex combination at the level of
each individual component. Further (11) implies that zt is also determined by rt−1 and xt.
The parameters W z

r ,W
z, b controlling the formula (11) are also unknown and they will be

estimated along with all the other parameters of the model.

zt is sometimes referred to as a gate. It controls the closeness of rt to rt−1 and r̃t.

rt−1 appears in two places in the formula (10): in the term zt � rt−1 as well as in the
formula (9) for r̃t. It might be redundant to have rt−1 appear in both these places. To
address this, GRU modifies (9) by using one more gate as follows:

r̃t := σ(Wr(rt−1 � gt) +Wxt + b),

where gt controls the extent to which rt−1 is used in the formula for r̃t. Similar to (11), the
gate gt is specified via

gt = σsigmoid(W g
r rt−1 +W gxt + bg). (12)

Putting all the formulae together, we get the following specification of the GRU model:

r0 = 0

gt = σsigmoid(W g
r rt−1 +W gxt + bg)

zt = σsigmoid(W z
r rt−1 +W zxt + bz)

r̃t := σtanh(Wr(rt−1 � gt) +Wxt + b)

rt = zt � rt−1 + (1− zt)� r̃t
µt = β0 + βT rt.

(13)

4



zt is called the update gate while gt is called the reset gate. The unknown parameters in this
model (which need to be estimated from the data) are W g

r ,W g, bg,W z
r ,W

z, bz,Wr,W, b, β0, β.

This is a more sophisticated model compared to the RNN model (6). In fact, (6) is a
special case of (13) corresponding to gt = 1 and zt = 0. The presence of the gates gt and zt
can alleviate the lack of long memory problem that was an issue with the RNNs.

4 LSTM (Long Short Term Memory)

LSTM is another modification to the basic RNN for enabling long memory. It also uses gates
and has one more gate compared to the GRU. Instead of a recursion directly between rt−1
and rt, the LSTM recursions are between the pairs (st−1, rt−1)→ (st, rt).

We again construct a potential version r̃t of rt in the same way as RNN:

r̃t = σ(Wrrt−1 +Wxt + b). (14)

In GRU, rt was defined as a convex combination of r̃t and rt−1. In LSTM, st is taken to
be a linear combination of st−1 and r̃t with gates controlling both coefficients of the linear
combination:

st = ft � st−1 + it � r̃t,

where ft and it denote gates. rt is defined usually as σtanh(st). In LSTM, one also adds a
gate to rt:

rt = ot � σtanh(st).

Putting all the terms together (and also writing the formulae for the gates), we obtain the
full LSTM model:

r0 = 0

ft = σsigmoid(W f
r rt−1 +W fxt + bf )

it = σsigmoid(W i
rrt−1 +W ixt + bi)

ot = σsigmoid(W o
r rt−1 +W oxt + bo)

r̃t := σtanh(Wrrt−1 +Wxt + b)

st = ft � st−1 + it � r̃t
rt = ot � σtanh(st)

µt = β0 + βT rt

(15)

ft is called the forget gate, it is called the input gate and ot is called the output gate. The
unknown parameters in this model are W f

r ,W f , bf ,W i
r ,W

i, bi,W o
r ,W

o, bo,Wr,W, b, β0, β.
These need to be estimated from data.

5 Additional Optional Reading

1. For more on GRUs, read https://en.wikipedia.org/wiki/Gated_recurrent_unit.

2. For more on LSTMs, read https://en.wikipedia.org/wiki/Long_short-term_memory.

3. A clear description of LSTM is given here: https://www.youtube.com/watch?v=

YCzL96nL7j0&t=870s

5

https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Long_short-term_memory
https://www.youtube.com/watch?v=YCzL96nL7j0&t=870s
https://www.youtube.com/watch?v=YCzL96nL7j0&t=870s

	Nonlinear AutoRegression
	Recurrent Neural Network (RNN)
	GRU (Gated Recurrent Unit)
	LSTM (Long Short Term Memory)
	Additional Optional Reading

