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1 Time Series Models, and Stationarity

A time series model describes the distribution of random variables yt for all t past and present
i.e., t = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . , in terms of certain unknown parameters. We refer to
this collection of random variables as doubly infinite because t extends to infinity in both
directions.

All the time series models that we shall study in this course will be jointly Gaussian (i.e.,
the joint distribution of (yt1 , . . . , ytk) will be multivariate Gaussian for every k and t1, . . . , tk).
Gaussianity ensures that the behavior of the time series model is characterized by means
(expectations) and covariances.

Some time series satisfy the property of stationarity which is defined as follows:

Definition 1.1 (Stationarity). A doubly infinite sequence of random variables yt is said to
be stationary if both the following conditions hold:

1. The mean of yt (denoted by Eyt) is the same for all times t

2. The variance of yt (denoted by var(yt)) is the same for all times t

3. The covariance between yt1 and yt2 only depends on the distance |t1 − t2| between t1
and t2.

Stationarity implies, for example, that the mean of y−2000 should be the same as y9999.
Also the covariance between y−2000 and y−2100 should be the same as the covariance between
y9899 and y9999 etc.

For a stationary time series model {yt}, the covariance between yt and yt+h will only
depend on |h|. We denote:

γ(h) = cov(yt, yt+h) for h = . . . ,−2,−1, 0, 1, 2, . . . .

γ(h) is called the AutoCovariance Function (ACVF) of the stationary time series model {yt}.
Observe that

γ(0) = cov(yt, yt) = var(yt) & γ(−h) = cov(yt, yt−h) = cov(yt−h, yt) = cov(yt−h, yt−h+h) = γ(h)

So γ(h) is a symmetric function of h, and we only need to evaluate it at nonnegative h.
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The AutoCorrelation Function (ACF) of a stationary time series model {yt} is defined as:

ρ(h) = correlation between yt and yt+h =
cov(yt, yt+h)√
var(yt)var(yt+h)

=
γ(h)√

γ(0)
√

γ(0)
=

γ(h)

γ(0)
.

Note that ρ(0) = 1 and ρ(h) = ρ(−h).

It is important to remember the following two points:

1. Stationarity refers to a time series model (not to actual data)

2. Not all time series models are stationary. In fact, there are many time series models
that are not stationary.

3. ACVF and ACF are only defined for stationary time series models.

Let us now look at some examples of time series models, starting with the simplest.

Example 1.2 (White Noise). The simplest time series model is yt = ϵt where ϵt
i.i.d∼ N(0, σ2).

This is known as the Gaussian white noise model. It is easy to check that Eyt = 0 and
cov(yt, yt+h) = σ2I{h = 0}. So the conditions of stationarity are satisfied, and the Gaussian
white noise is a stationary model. Its ACF is ρ(h) = I{h = 0}.

Example 1.3 (Constant mean plus White Noise). The next simplest time series model is

yt = µ + ϵt where, again, ϵt
i.i.d∼ N(0, σ2). This is also a stationary time model because

Eyt = µ and cov(yt, yt+h) = σ2I{h = 0}. Its ACF is ρ(h) = I{h = 0}.

The next two examples are for non-stationary time series models.

Example 1.4. yt = β0 + β1t+ ϵt. Here the mean of yt is:

Eyt = β0 + β1t

and covariances are:

var(yt) = σ2 and cov(yt1 , yt2) = 0 for t1 ̸= t2.

So the mean changes with t, variance is constant and there is no correlation between different
time points. Because the mean changes with t, this is a non-stationary model.

Example 1.5. yt = β0 + β1 cos(2πft) + β2 sin(2πft) + ϵt The means are given by:

Eyt = β0 + β1 cos(2πft) + β2 sin(2πft)

and covariances are:

var(yt) = σ2 and cov(yt1 , yt2) = 0 for t1 ̸= t2.

Again the mean changes with t, variance is constant and there is no correlation between
different time points. Because the mean changes with t, this is non-stationary.
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2 Moving Average (MA) Models

MA models present the simplest examples of stationary time series models that are not just
white noise. Given a positive integer q ≥ 1, the Moving Average model with order q (denoted
by MA(q)) is defined by the equation:

yt = µ+ ϵt + θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q (1)

where ϵt
i.i.d∼ N(0, σ2). The MA(q) model has q+2 unknown parameters which are estimated

from observed data: µ, θ1, . . . , θq, σ.

The MA(q) model has been called the “Summation of Random Causes” by its inventor
Slutzky in the original paper titled “The summation of random causes as the source of
cyclic processes” published in Econometrica in 1937. Basically the ϵt’s can be treated as
random causes which are assumed to be independently and identically distributed. The
actual observations yt’s are consequences of these causes. The consequence for tine t depends
on the cause for time t as well as the causes for times t− 1, . . . , t− q. These different causes
affect the consequence at time t differently depending on the values of θ1, . . . , θq. Note that
successive observations yt share some common causes leading to dependence between the
successive values of yt.

The mean of yt is clearly equal to µ (so it is constant in t). The covariance between yt
and yt+h is given by:

cov(yt, yt+h)

= cov (µ+ ϵt + θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q, µ+ ϵt+h + θ1ϵt+h−1 + θ2ϵt+h−2 + · · ·+ θqϵt+h−q)

= cov

µ+

q∑
j=0

θjϵt−j , µ+

q∑
k=0

θkϵt+h−k


=

q∑
j=0

q∑
k=0

θjθkcov (ϵt−j , ϵt+h−k) .

Note that, in the sum
∑q

j=0 θjϵt−j , we take θ0 = 1. Because {ϵt} is Gaussian white noise,
the covariance cov (ϵt−j , ϵt+h−k) equals zero unless t − j = t + h − k i.e., k = j + h. So we
need the three conditions 0 ≤ j ≤ q, 0 ≤ k ≤ q as well as k = j + h. If h > q, it is clear
that this is not possible for any j, k. So we have cov(yt, yt+h) equals zero when h > q. When
0 ≤ h ≤ q, we have 0 ≤ j ≤ q and 0 ≤ j + h ≤ q which implies 0 ≤ j ≤ q − h. We then get

cov(yt, yt+h) = σ2
q−h∑
j=0

θjθj+h.

We thus have:

cov(yt, yt+h) =

{
σ2

∑q−h
j=0 θjθj+h : 0 ≤ h ≤ q

0 : h > q

The above covariance does not depend on t which shows that the MA(q) model is stationary.
Thus the ACVF of MA(q) is:

γ(h) =

{
σ2

∑q−h
j=0 θjθj+h : 0 ≤ h ≤ q

0 : h > q

3



The ACF ρ(h) = γ(h)/γ(0) equals:

ρ(h) =


∑q−h

j=0 θjθj+h∑q
j=0 θ

2
j

: 0 ≤ h ≤ q

0 : h > q

The simplest of these MA(q) models is MA(1) (i.e., q = 1):

yt = µ+ ϵt + θϵt−1.

The ACF of MA(1) is:

ρ(h) =


1 : h = 0
θ1

1+θ21
: h = 1

0 : h > 1

3 Sample ACF

We have so far defined the ACF ρ(h) for a stationary time series model as the correlation
between yt and yt+h. Given a time series dataset y1, . . . , yn, we can define a sample autocor-
relation function that can be seen as an estimate of the ACF of a time series model that is
assumed for the data.

For a fixed value of h, the sample acf at lag h is essentially defined as the correlation
coefficient between (at, bt), t = 1, . . . , n − h where at = yt and bt = yt+h. This correlation
coefficient is given by:∑n−h

t=1 (at − ā)(bt − b̄)√∑n−h
t=1 (at − ā)2

√∑n−h
t=1 (bt − b̄)2

=

∑n−h
t=1 (yt − ā)(yt+h − b̄)√∑n−h

t=1 (yt − ā)2
√∑n−h

t=1 (yt+h − b̄)2

where

ā =
1

n− h

n−h∑
t=1

at =
1

n− h

n−h∑
t=1

yt and b̄ =
1

n− h

n−h∑
t=1

bt =
1

n− h

n−h∑
t=1

yt+h

This correlation can be simplified slightly by making the following approximations:

ā ≈ ȳ b̄ ≈ ȳ
n−h∑
t=1

(yt − ā)2 ≈
n∑

t=1

(yt − ȳ)2 and
n−h∑
t=1

(yt+h − b̄)2 ≈
n∑

t=1

(yt − ȳ)2

which are reasonable when h is very small compared to n. Making these approximations
lead to the following definition of the sample ACF:

rh :=

∑n−h
t=1 (yt − ȳ)(yt+h − ȳ)∑n

t=1(yt − ȳ)2
for h = 0, 1, 2, . . .

Note that r0 is always equal to 1.

The sample ACF rh, h ≥ 0 can be computed for any time series dataset, although it is
only useful for data for which stationary models are appropriate.

The sample ACF is particularly useful for determining the order q for fitting an MA(q)
model. For an MA(q) model, we have seen in the previous section that the theoretical ACF
ρ(h) becomes exactly zero when h > q. This suggests that if the sample ACF rh for a
particular dataset becomes small (not exactly zero because of randomness) when h exceeds
a particular q, then MA(q) is probably a good model for that dataset. This diagnostic is
very commonly used when working with MA models.
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4 Sample PACF

As discussed above, the sample ACF is a useful diagnostic for determining the order of q for
an MA(q) model given data. There exists a similar diagnostic called sample PACF (PACF
stands for Partial AutoCorrelation Function) which is useful for determining the order of p
for an AR(p) model.

The sample PACF is defined as follows: for h ≥ 1,

sample PACF(h) = estimate ϕ̂h of ϕh when AR(h) is fit to the data

If the sample PACF(h) becomes negligibly small after a particular p, this suggests that AR(p)
is a good model for the data. This method is similar to the heuristic technique that we used
in last lecture and Lab 10 for selecting the order p to fit AR(p). There we were looking at
the uncertainty interval for ϕp to see if it contains zero when AR(p) is fit to the data. This
is the same as checking whether the sample PACF(h) is small at h = p.

It can happen (we will see examples of this later) that the sample PACF(h) for h =
1, 2, . . . , 11 are all negligible but at h = 12, it is nonnegligible. In that case, we would be
using AR(12). More specifically, we will use that value of p for which sample PACF(h) is
negligible for all h > p. The same is true for sample ACF and MA(q).

5 Why is this called “Partial” Autocorrelation?

Why should the quantity ϕ̂h (obtained by fitting AR(h) to the data) be called the Sample
Partial Autocorrelation? It turns out that there is a connection between regression coef-
ficients and something called “partial correlation” (see e.g., https://en.wikipedia.org/
wiki/Partial_correlation).

Suppose we have data on two variables x and y: (x1, y1), . . . (xn, yn). The correlation
between them is defined in the usual way as:

corr(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
.

Correlation is also related to regression. If we regress yi on xi and obtain the usual least
squares estimators β̂0 and β̂1, then

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
= corr(x, y)

√∑n
i=1(yi − ȳ)2∑n
i=1(xi − x̄)2

= corr(x, y)

√
var(y)

var(x)
(2)

where var(x) =
∑n

i=1(xi − x̄)2 and var(y) =
∑n

i=1(yi − ȳ)2. Note that, in this section, corr
and var refer to things calculated on the observed data (as opposed to random variables).

Now instead of just having data on x and y, we also have data on other variables z1, . . . , zk.
The dataset now is (yi, xi, zi1, . . . , zik) for i = 1, . . . , n. The partial correlation between x
and y given the variables z1, . . . , zk is denoted by corr(x, y | z1, . . . , zk) and is defined as the
correlation between the residual of x given z1, . . . , zk and the residual of y given z1, . . . , zk.

Here, residual of x given z1, . . . , zk refers to the residual in the linear regression of x given
z1, . . . , zk:

e
x|z1,...,zk
i := xi − β̂x

0 − β̂x
1 zi1 − · · · − β̂x

kzik,
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where β̂x
0 , . . . , β̂

x
k are the fitted regression coefficients of xi on 1, zi1, . . . , zik.

Similarly the residual in the linear regression of y given z1, . . . , zk is

e
y|z1,...,zk
i := yi − β̂y

0 − β̂y
1zi1 − · · · − β̂y

kzik

where β̂y
0 , . . . , β̂

y
k are the fitted regression coefficients of yi on 1, zi1, . . . , zik.

Therefore:

corr(x, y | z1, . . . , zk) = corr
(
ex|z1,...,zk , ey|z1,...,zk

)
.

Similar to (2), there is a nice relationship between fitted regression coefficients in multiple
linear regression and partial correlation. Consider the multiple regression of y on x as well
z1, . . . , zk. Let the fitted regression coefficients be: β̂0, β̂x, β̂1, . . . , β̂k:

(β̂0, β̂x, β̂1, . . . , β̂k) minimize

n∑
i=1

(yi − β0 − βxxi − β1zi1 − · · · − βkzik)
2 .

Then it turns out that

β̂x = corr(x, y | z1, . . . , zk)

√
var(ey|z1,...,zk)

var(ex|z1,...,zk)
. (3)

This is the connection between a fitted regression coefficient (corresponding to a specific
covariate) in multiple linear regression and the partial correlation between the response and
the covariate given the other covariates.

Now let us come to the time series setting with data y1, . . . , yn. We fit AR(p) models using
the regression:

yt = ϕ0 + ϕ1yt−1 + · · ·+ ϕpyt−p + ϵt.

Following the formula (3), we write

ϕ̂p = corr(yt−p, yt | yt−1, . . . , yt−p+1)

√
var(eyt|yt−1,...,yt−p+1)

var(eyt−p|yt−1,...,yt−p+1)
.

When the AR(p) model is stationary (we shall see in the next lecture on conditions for
AR(p) models to be stationary), the population analogues of the variance terms above
(var(eyt|yt−1,...,yt−p+1) and var(eyt−p|yt−1,...,yt−p+1)) turn out to be equal, and they are nearly
same in the sample so they can be dropped and we get

ϕ̂p ≈ corr(yt−p, yt | yt−1, . . . , yt−p+1).

corr(yt−p, yt | yt−1, . . . , yt−p+1) can be called the partial autocorrelation at lag p. This is the

reason why the plot of ϕ̂h (when the AR(h) model is fit to the data) is referred to as the
sample PACF plot.

6 Additional Optional Reading

1. For MA models, see parts of Section 3.2 of Shumway-Stoffer 4th edition.

2. For ACF and PACF, see Section 3.4 ofShumway-Stoffer 4th edition.
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