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In this lecture, we discuss a Bayesian treatment for regularization. Before that, let us
recap the high-dimensional regression model from the last two lectures, and ridge regression.

1 Recap: Ridge Regression

Our model from the last two lectures is given by:
yr = Bo+ P1(t — 1) + BoReLU(t —2) + -+ + B_1ReLU(t — (n — 1)) + ¢ (1)

where, as always, € tid N(0,02). Here ReLU(t — ¢) = (t — ¢)4 equals 0 if ¢ < ¢ and equals
(t—rc)ift >ec.

The unknown parameters in this model are Bg, 81, ..., Bn_1 as well as o.

Alternatively, (1) can be written as:

y=XpB+e
where
1 0 0 Bo
1 1 0 0 061
12 1 - - -0 Bo
x=1- . . . . . .| andB= . (2)
1 n-1 n-2 - - -1 Bn_1

The ridge regression estimator ﬁridge()\) for B is given by the minimizer of:

n
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This is equivalent to the Hodrick-Prescott filter as we discussed in the last lecture. The
objective function can also be written as

n—1

ly = XBII>+ 1> 5.

t=2



It turns out that Bridge()\) can be written in closed form using matrix notation. To see this,
note first that the gradient of the above objective function with respect to S is given by

0
0
n—1 /82
\% (IIy —XBIP+ Z,@f) = 2XTy+2xTxp+20| -
t=2
Bn—l
Let J denote the n x n diagonal matrix whose diagonal entries are 0,0,1,...,1. In other

words, the first two diagonal entries of J are 0 and the rest of the diagonal entries equal 1:

00 0 O 0
0 0 0 O 0
0 010 0
J— 0 0 0 1 0
00 0 O 1
With this matrix, we can write
0
0
n—1 BZ
VIly=XBIP+AY 87| =—2XTy+2XTXp+2) | - | =-2XTy+2X"XB+2)\J8.
t=2 .
ﬁn—l

Setting this gradient equal to zero, we get
—2XTy+2XTXB+2\JB=0 = (XTX +\J)B=X"y.
which gives N
prdee(\) = (XTX + \J)"1xTy. (4)

This looks very similar to the usual linear regression least squares formula (X7 X)~1X7Ty
with the only difference being the presence of the AJ term.

2 Bayesian Regularization

We now treat regularization in high-dimensional regression from the Bayesian point of view.
Before discussing regularization, let us first recap the basics of Bayesian regression in the
model: N

y=XpB+e with ¢ A N(0,02).

The basic prior that we used previously is

B; K unif(—c, €).



for a large positive constant C. For this prior, we showed (see e.g., problem 4 in Homework
1) that
B |data,o ~ N (XTX) ' X"y, o*(XTX)™) (5)

when C' — oo. This fact is not quite true if C' is not very large.

A slightly different prior which allows exact formulae even for finite C' is the Gaussian

prior:
8; I N(0,0). (6)

Under this prior, it turns out that

XTx I\ 'XTy /XTX 1\!
5'data"’”N(< o2 +c> Uw( = +C> (7)

where [ is the identity matrix. It is instructive to compare (5) and (7). Unlike (5) which is
only true for large C, the fact (7) is true for every C' > 0. It is also clear that when C' — oo,
then (7) is the same as (5). Observe that when C is large, there is not much difference
qualitatively between unif(—C, C') and N(0,C) (they are both uninformative priors).

We shall prove a more general form of (7) later in this lecture.

Now let us specialize to the case of the high dimensional regression (2). If we use the prior
(6) with C' — oo, then the posterior mean becomes the unregularized least squares (or un-
regularized MLE) estimator (X7 X)~!X7y. The fitted values will then perfectly interpolate
the data leading to overfitting. From the Bayesian perspective, this is happening because
the prior (6) with very large C' is not useful for this dataset. The prior needs to be changed
for a more meaningful analysis. In the frequentist analysis, the main motivation for the ridge
regularization (3) is the need to obtain smaller estimates for s, ..., 8,—1 which will lead to
a smoother fit to the data. This same effect can be obtained by the following modification
of the prior (6):

Bo, 1 IN(0,C) and Bo..., Bt W N(0,72) (8)
for a small parameter 7 (in the above, we also assume that Sy, ..., 8,—1 are all independent).
The prior (8) can be written as

B~ N(0,Q) (9)
where @ is the diagonal matrix with diagonal entries C,C,72,...,72. Under the prior (9),
the posterior of § is given by
xXTx L xTy (XTX !
B | data,o ~ N (( = + Q_1> Uzy, <02 + Q_1> (10)
We will prove this result later in this lecture. The posterior mean therefore is given by
xXTx T -
< — + Q‘1> 29 = (XTX +02Q7") " x7y. (11)
o o

This expression is closely related to the ridge estimator (4). Note that Q~! is diagonal
with diagonal entries 1/C,1/C,1/72,...,1/72. When C is very large, the first two diagonal
entries of Q! are very close to zero so that

1
-1
Q™ ~—J

T



Thus the posterior mean (11) is therefore
o2 \
T T
(X X+ 5 J) xTy

which matches (4) if
2

o o
A = — or, equivalently 7 = —.

T2 vV
Ridge regularization therefore can be understood as Bayesian regression with the prior (8).
The precise equivalence is obtained if \ is related to 72 via A = o2 /72.

3 Bayesian approach for dealing with unknown 7 and o

One gets smooth fits to the data by working with the prior (8) for small 7. This is not very
surprising because the prior injects a strong amount of bias in favor of smooth fits. The real
power of the Bayesian approach lies in the ability to automatically infer 7 from the data.
This is done by simply placing a prior on 7 (along with the priors on 5 and o). We shall use
the following prior:

log ,log o b unif(—C, C)

and
Bl7,o~N(0,Q)

where @ is the same as in (9). Note that this prior implies that we are allowing essentially
(because C'is large) all possible values of 7 and o. In particular, we are not a priori ruling
out large 7 just because we don’t like wiggly fits.

The prior joint density for 8, 7,0 is
fa70(B,7,0) = f(7) fo(0) fp1-(B)

_I{e_C<T<GC}I{€_C<U<6C} 1 \" 1 |
- 20T 2Ca <\/ﬁ> Jdetg P <_25 @ 6)
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We will also ignore the indicator because C' will be very large. It is important to note that @
is not a constant matrix as it depends on 7. The likelihood is (as usual in linear regression)

1 " -n 1 2
() o emp (—gmelly - X512).

The posterior for 3,7, o is therefore

o1 1/1 9 T 1
fﬁ,r,a|data(ﬁ;770)O<W6XP 3 EHZ/—XﬁH +B8'Q B .
The term inside the exponent is a quadratic in 8 and it is natural to complete the square
which is done as follows:
1 B yTy 28T X Ty
Sy = X8| +57Q7"8 = e B
o o o2

=(B-mw" (XX >(5—u)+yy—uT<X;X+Q_l>u




where

XTx \ " XTy
utz( 2 td > 3
We thus have
1 _
—slly = XBI*+87Q7"8

T T T T -1 o7
:(6—M)T(XX+Q‘1>(6—u>+y2y—y;X(XQX+Q—1> Xf.
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Plugging this in the posterior formula, we deduce

f,@,r,a|data( s Ty J)
T
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X exp (202 < = +Q -2 |-

This expression may look complicated but the dependence on S is simple through the
quadratic which implies that

o2

—1 T T T T -1
exp (—; ((ﬂ—mT (@) e+t -2 (2 e

xTx N\ xTx N\ 'xTy /xTx N\ !
5’data,U,T~N<u’< = +Q 1) )_N<< s +Q 1> 02y7<02+Q 1)

This proves (7) and (10). It is also straightforward to integrate 8 from the joint posterior to
obtain the posterior of 7, o:

f‘r,a\data(Ta U)

gl XTX - yTy yTX (XTX L XTy
X ——4/det | —— -1 exp | —=2— | ex + Q1 .
Vdet @ ( o2 +Q > p< 202 P{ 02 o? @ o2
In practice, inference can be carried out by first taking a grid of o and 7 values and computing
the above posterior (on the logarithmic scale) at the grid points. We can obtain point
estimates of o and 7 by taking the posterior maximizers. Alternatively, we can obtain

posterior samples of o and 7 by sampling from the grid points with posterior weights. For
each (o, 7) sample, one can sample § using the multivariate normal distribution (10).

This grid approach can be avoided by using MCMC methods such as the Gibbs sampler.
We shall not be discussing these.

4 Comments on Bayesian Regularization

In practice, the posterior f; ;|data(T,0) tends to prefer 7 values which are neither too small
nor too large. Because

fT,o|data(7—7 U) X fdata\r,a (T, U)fT,U (7—7 U)?



and the prior f;,(7,0) is quite flat, the likelihood fyata|r,+(7,0) must prefer values of 7
which are neither too small nor too large. Note that there is a big difference between the
two likelihoods:

fdata\,@,a(data) and fdata\T,a(data)'

Maximizing fqata/,s(data) leads to the unregularized least squares estimate which leads
to overfitting. On the other hand, maximizing fyatajr,-(data) often leads to a fairly small
estimate of 7 leading to a smooth trend function. The reason for this discrepancy can be
understood by noting that

fdata\T,a (data) = / fdata|,8,a (data) fB|T (ﬁ)dﬁ

When 7 is large, the term fg-(8) will be small simply because the normal density with
variance 72 will be flat for large 7. On the other hand, when 7 is too small, the weight
fs1-(B) will be significant only for very smooth Bs but these s will have poor values for

fdata\ﬂ,a (data> .
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