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In this lecture, we discuss a Bayesian treatment for regularization. Before that, let us
recap the high-dimensional regression model from the last two lectures, and ridge regression.

1 Recap: Ridge Regression

Our model from the last two lectures is given by:

yt = β0 + β1(t− 1) + β2ReLU(t− 2) + · · ·+ βn−1ReLU(t− (n− 1)) + εt (1)

where, as always, εt
i.i.d∼ N(0, σ2). Here ReLU(t − c) = (t − c)+ equals 0 if t ≤ c and equals

(t− c) if t > c.

The unknown parameters in this model are β0, β1, . . . , βn−1 as well as σ.

Alternatively, (1) can be written as:

y = Xβ + ε

where

X =



1 0 0 · · · 0
1 1 0 · · · 0
1 2 1 · · · 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 n− 1 n− 2 · · · 1


and β =



β0
β1
β2
·
·
·

βn−1


. (2)

The ridge regression estimator β̂ridge(λ) for β is given by the minimizer of:

n∑
t=1

(yt − β0 − β1(t− 1)− β2ReLU(t− 2)− · · · − βn−1ReLU(t− (n− 1)))2

+ λ
(
β22 + β23 + · · ·+ β2n−1

)
.

(3)

This is equivalent to the Hodrick-Prescott filter as we discussed in the last lecture. The
objective function can also be written as

‖y −Xβ‖2 + λ

n−1∑
t=2

β2j .
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It turns out that β̂ridge(λ) can be written in closed form using matrix notation. To see this,
note first that the gradient of the above objective function with respect to β is given by

∇

(
‖y −Xβ‖2 + λ

n−1∑
t=2

β2j

)
= −2XT y + 2XTXβ + 2λ



0
0
β2
·
·
·

βn−1


Let J denote the n × n diagonal matrix whose diagonal entries are 0, 0, 1, . . . , 1. In other
words, the first two diagonal entries of J are 0 and the rest of the diagonal entries equal 1:

J =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
0 0 0 0 · · · 1


With this matrix, we can write

∇

(
‖y −Xβ‖2 + λ

n−1∑
t=2

β2j

)
= −2XT y+2XTXβ+2λ



0
0
β2
·
·
·

βn−1


= −2XT y+2XTXβ+2λJβ.

Setting this gradient equal to zero, we get

−2XT y + 2XTXβ + 2λJβ = 0 =⇒
(
XTX + λJ

)
β = XT y.

which gives
β̂ridge(λ) = (XTX + λJ)−1XT y. (4)

This looks very similar to the usual linear regression least squares formula (XTX)−1XT y
with the only difference being the presence of the λJ term.

2 Bayesian Regularization

We now treat regularization in high-dimensional regression from the Bayesian point of view.
Before discussing regularization, let us first recap the basics of Bayesian regression in the
model:

y = Xβ + ε with εt
i.i.d∼ N(0, σ2).

The basic prior that we used previously is

βj
i.i.d∼ Unif(−C,C).
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for a large positive constant C. For this prior, we showed (see e.g., problem 4 in Homework
1) that

β | data, σ ∼ N
(
(XTX)−1XT y, σ2(XTX)−1

)
(5)

when C →∞. This fact is not quite true if C is not very large.

A slightly different prior which allows exact formulae even for finite C is the Gaussian
prior:

βj
i.i.d∼ N(0, C). (6)

Under this prior, it turns out that

β | data, σ ∼ N

((
XTX

σ2
+
I

C

)−1
XT y

σ2
,

(
XTX

σ2
+
I

C

)−1)
(7)

where I is the identity matrix. It is instructive to compare (5) and (7). Unlike (5) which is
only true for large C, the fact (7) is true for every C > 0. It is also clear that when C →∞,
then (7) is the same as (5). Observe that when C is large, there is not much difference
qualitatively between unif(−C,C) and N(0, C) (they are both uninformative priors).

We shall prove a more general form of (7) later in this lecture.

Now let us specialize to the case of the high dimensional regression (2). If we use the prior
(6) with C → ∞, then the posterior mean becomes the unregularized least squares (or un-
regularized MLE) estimator (XTX)−1XT y. The fitted values will then perfectly interpolate
the data leading to overfitting. From the Bayesian perspective, this is happening because
the prior (6) with very large C is not useful for this dataset. The prior needs to be changed
for a more meaningful analysis. In the frequentist analysis, the main motivation for the ridge
regularization (3) is the need to obtain smaller estimates for β2, . . . , βn−1 which will lead to
a smoother fit to the data. This same effect can be obtained by the following modification
of the prior (6):

β0, β1
i.i.d∼ N(0, C) and β2 . . . , βn−1

i.i.d∼ N(0, τ2) (8)

for a small parameter τ (in the above, we also assume that β0, . . . , βn−1 are all independent).
The prior (8) can be written as

β ∼ N(0, Q) (9)

where Q is the diagonal matrix with diagonal entries C,C, τ2, . . . , τ2. Under the prior (9),
the posterior of β is given by

β | data, σ ∼ N

((
XTX

σ2
+Q−1

)−1
XT y

σ2
,

(
XTX

σ2
+Q−1

)−1)
(10)

We will prove this result later in this lecture. The posterior mean therefore is given by(
XTX

σ2
+Q−1

)−1
XT y

σ2
=
(
XTX + σ2Q−1

)−1
XT y. (11)

This expression is closely related to the ridge estimator (4). Note that Q−1 is diagonal
with diagonal entries 1/C, 1/C, 1/τ2, . . . , 1/τ2. When C is very large, the first two diagonal
entries of Q−1 are very close to zero so that

Q−1 ≈ 1

τ2
J.
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Thus the posterior mean (11) is therefore(
XTX +

σ2

τ2
J

)−1
XT y

which matches (4) if

λ =
σ2

τ2
or, equivalently τ =

σ√
λ
.

Ridge regularization therefore can be understood as Bayesian regression with the prior (8).
The precise equivalence is obtained if λ is related to τ2 via λ = σ2/τ2.

3 Bayesian approach for dealing with unknown τ and σ

One gets smooth fits to the data by working with the prior (8) for small τ . This is not very
surprising because the prior injects a strong amount of bias in favor of smooth fits. The real
power of the Bayesian approach lies in the ability to automatically infer τ from the data.
This is done by simply placing a prior on τ (along with the priors on β and σ). We shall use
the following prior:

log τ, log σ
i.i.d∼ unif(−C,C)

and
β | τ, σ ∼ N(0, Q)

where Q is the same as in (9). Note that this prior implies that we are allowing essentially
(because C is large) all possible values of τ and σ. In particular, we are not a priori ruling
out large τ just because we don’t like wiggly fits.

The prior joint density for β, τ, σ is

fβ,τ,σ(β, τ, σ) = fτ (τ)fσ(σ)fβ|τ (β)

=
I{e−C < τ < eC}

2Cτ

I{e−C < σ < eC}
2Cσ

(
1√
2π

)n 1√
detQ

exp

(
−1

2
βTQ−1β

)
∝ I{e−C < τ, σ < eC}

τσ

1√
detQ

exp

(
−1

2
βTQ−1β

)
.

We will also ignore the indicator because C will be very large. It is important to note that Q
is not a constant matrix as it depends on τ . The likelihood is (as usual in linear regression)(

1√
2π

)n
σ−n exp

(
− 1

2σ2
‖y −Xβ‖2

)
.

The posterior for β, τ, σ is therefore

fβ,τ,σ|data(β, τ, σ) ∝ σ−n−1τ−1√
detQ

exp

(
−1

2

(
1

σ2
‖y −Xβ‖2 + βTQ−1β

))
.

The term inside the exponent is a quadratic in β and it is natural to complete the square
which is done as follows:

1

σ2
‖y −Xβ‖2 + βTQ−1β =

yT y

σ2
− 2βTXT y

σ2
+ βT

(
XTX

σ2
+Q−1

)
β

= (β − µ)T
(
XTX

σ2
+Q−1

)
(β − µ) +

yT y

σ2
− µT

(
XTX

σ2
+Q−1

)
µ
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where

µ :=

(
XTX

σ2
+Q−1

)−1
XT y

σ2

We thus have

1

σ2
‖y −Xβ‖2 + βTQ−1β

= (β − µ)T
(
XTX

σ2
+Q−1

)
(β − µ) +

yT y

σ2
− yTX

σ2

(
XTX

σ2
+Q−1

)−1
XT y

σ2
.

Plugging this in the posterior formula, we deduce

fβ,τ,σ|data(β, τ, σ)

∝ σ−n−1τ−1√
detQ

exp

(
−1

2

(
(β − µ)T

(
XTX

σ2
+Q−1

)
(β − µ) +

yT y

σ2
− yTX

σ2

(
XTX

σ2
+Q−1

)−1
XT y

σ2

))

=
σ−n−1τ−1√

detQ
exp

(
−1

2
(β − µ)T

(
XTX

σ2
+Q−1

)
(β − µ)

)
exp

(
−y

T y

2σ2

)
× exp

(
yTX

2σ2

(
XTX

σ2
+Q−1

)−1
XT y

σ2

)
.

This expression may look complicated but the dependence on β is simple through the
quadratic which implies that

β | data, σ, τ ∼ N

(
µ,

(
XTX

σ2
+Q−1

)−1)
= N

((
XTX

σ2
+Q−1

)−1
XT y

σ2
,

(
XTX

σ2
+Q−1

)−1)

This proves (7) and (10). It is also straightforward to integrate β from the joint posterior to
obtain the posterior of τ, σ:

fτ,σ|data(τ, σ)

∝ σ−n−1τ−1√
detQ

√
det

(
XTX

σ2
+Q−1

)−1
exp

(
−y

T y

2σ2

)
exp

(
yTX

2σ2

(
XTX

σ2
+Q−1

)−1
XT y

σ2

)
.

In practice, inference can be carried out by first taking a grid of σ and τ values and computing
the above posterior (on the logarithmic scale) at the grid points. We can obtain point
estimates of σ and τ by taking the posterior maximizers. Alternatively, we can obtain
posterior samples of σ and τ by sampling from the grid points with posterior weights. For
each (σ, τ) sample, one can sample β using the multivariate normal distribution (10).

This grid approach can be avoided by using MCMC methods such as the Gibbs sampler.
We shall not be discussing these.

4 Comments on Bayesian Regularization

In practice, the posterior fτ,σ|data(τ, σ) tends to prefer τ values which are neither too small
nor too large. Because

fτ,σ|data(τ, σ) ∝ fdata|τ,σ(τ, σ)fτ,σ(τ, σ),
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and the prior fτ,σ(τ, σ) is quite flat, the likelihood fdata|τ,σ(τ, σ) must prefer values of τ
which are neither too small nor too large. Note that there is a big difference between the
two likelihoods:

fdata|β,σ(data) and fdata|τ,σ(data).

Maximizing fdata|β,σ(data) leads to the unregularized least squares estimate which leads
to overfitting. On the other hand, maximizing fdata|τ,σ(data) often leads to a fairly small
estimate of τ̂ leading to a smooth trend function. The reason for this discrepancy can be
understood by noting that

fdata|τ,σ(data) =

∫
fdata|β,σ(data)fβ|τ (β)dβ.

When τ is large, the term fβ|τ (β) will be small simply because the normal density with
variance τ2 will be flat for large τ . On the other hand, when τ is too small, the weight
fβ|τ (β) will be significant only for very smooth βs but these βs will have poor values for
fdata|β,σ(data).
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