
STAT 153 & 248 - Time Series
Lecture Three
Spring 2025, UC Berkeley

Aditya Guntuboyina

January 28, 2025

1 Bayesian Inference in Simple Linear Regression

We observe data (x1, y1), . . . , (xn, yn). In the linear regression model, it is assumed that
x1, . . . , xn are fixed deterministic values, and that the response values y1, . . . , yn satisfy the
model equation:

yi = β0 + β1xi + ϵi with ϵi
i.i.d∼ N(0, σ2).

Another way of writing the model is:

yi
independent∼ N(β0 + β1xi, σ

2).

There are three parameters in this model: β0, β1 and σ2.

In Bayesian inference, the first step is to select a prior for the unknown parameters β0, β1, σ.
A reasonable prior reflecting ignorance is

β0, β1, log σ
i.i.d∼ Unif(−C,C)

for a large number C (the exact value of C will not matter in the following calculations).
Note that as σ is always positive, we have made the uniform assumption on log σ (by the
change of variable formula, the density of σ would be given by fσ(x) = flog σ(log x)

1
x =

I{−C<log x<C}
2Cx = I{e−C<x<eC}

2Cx .

The joint posterior for all the unknown parameters β0, β1, σ is then given by (below we
write the term “data” for y1, . . . , yn):

fβ0,β1,σ|data(β0, β1, σ) ∝ fy1,...,yn|β0,β1,σ(y1, . . . , yn)fβ0,β1,σ(β0, β1, σ).

The two terms on the right hand side above are the likelihood:

fy1,...,yn|β0,β1,σ(y1, . . . , yn) ∝ σ−n exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

)
,

and the prior:

fβ0,β1,σ(β0, β1, σ) = fβ0(β0)fβ1(β1)fσ(σ)

∝ I{−C < β0 < C}
2C

I{−C < β1 < C}
2C

I{e−C < σ < eC}
2Cσ

∝ 1

σ
I {−C < β0, β1, log σ < C} .
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We thus obtain

fβ0,β1,σ|data(β0, β1, σ)

∝ σ−n−1 exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

)
I {−C < β0, β1, log σ < C} .

The above is the joint posterior over β0, β1, σ. The posterior over only the main parameters
β0, β1 can be obtained by integrating (or marginalizing) the parameter σ.

fβ0,β1|data(β0, β1) =

∫
fβ0,β1,σ|data(β0, β1, σ)dσ

∝ I{−C < β0, β1 < C}
∫ eC

e−C

σ−n−1 exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

)
dσ.

When C is large, the above integral can be evaluated from 0 to ∞ which gives

fβ0,β1|data(β0, β1) ∝ I{−C < β0, β1 < C}
∫ ∞

0
σ−n−1 exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

)
dσ.

The change of variable

s =
σ√∑n

i=1(yi − β0 − β1xi)2

allows us to write the integral as∫ ∞

0
σ−n−1 exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

)
dσ

=

(
n∑

i=1

(yi − β0 − β1xi)
2

)−n/2 ∫ ∞

0
s−n−1 exp

(
− 1

2s2

)
ds ∝

(
n∑

i=1

(yi − β0 − β1xi)
2

)−n/2

.

The posterior density of (β0, β1) is thus

fβ0,β1|data(β0, β1) ∝ I{−C < β0, β1 < C}

(
n∑

i=1

(yi − β0 − β1xi)
2

)−n/2

.

Using the notation

S(β0, β1) :=
n∑

i=1

(yi − β0 − β1xi)
2,

we write

fβ0,β1|data(β0, β1) ∝ I{−C < β0, β1 < C}
(

1

S(β0, β1)

)n/2

. (1)

In most regression problems, the least squares criterion S(β0, β1) will take large values (for
example, in the US population dataset, the smallest possible value of S(β0, β1) is of the order

of billions). This would mean that
(

1
S(β0,β1)

)n/2
would be very small for all values of β0, β1

(of course, the normalizing constant in front of (1) would then have to be quite large). In
order to not deal with such small values, it makes sense to rewrite the posterior density as:

fβ0,β1|data(β0, β1) ∝

(
S(β̂0, β̂1)

S(β0, β1)

)n/2

I{−C < β0, β1 < C} (2)
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Note that (1) and (2) represent exactly the same density because the term (S(β̂0, β̂1))
n/2

does not depend on β0, β1 and is thus a constant.

Generally, the density (2) will be quite sharply concentrated around the least squares
estimator (β̂0, β̂1) especially when n is large. This is because, when (β0, β1) is such that
S(β0, β1) is large compared to S(β̂0, β̂1), the quantity(

S(β̂0, β̂1)

S(β0, β1)

)n/2

would be quite negligible because of the large power n/2. As a result, the posterior density
fβ0,β1|data(β0, β1) will be concentrated around those values of (β0, β1) for which S(β0, β1) is

quite close to S(β̂0, β̂1). For example, suppose n = 791 (as in the US population dataset),
and that (β0, β1) is such that S(β0, β1) = (1.1)S(β̂0, β̂1). Then(

S(β̂0, β̂1)

S(β0, β1)

)n/2

=

(
1

1.1

)395.5

≈ 4.26× 10−17.

Such (β0, β1) will thus get negligible posterior probability. Even for (β0, β1) such that
S(β0, β1) = (1.01)S(β̂0, β̂1), we have(

S(β̂0, β̂1)

S(β0, β1)

)n/2

=

(
1

1.01

)395.5

≈ 0.02

and so such (β0, β1) will also get fairly small posterior probability.

To sum up, when n is large, the posterior probability will be concentrated around those
(β0, β1) for which S(β0, β1) is very close to S(β̂0, β̂1). Generally, this would imply that
(β0, β1) would itself have to be close to (β̂0, β̂1). For this reason, the indicator term in (2)
has no effect when C is large. From now on, we shall drop this indicator term and refer to
the Bayesian posterior as simply

fβ0,β1|data(β0, β1) ∝

(
S(β̂0, β̂1)

S(β0, β1)

)n/2

. (3)

A more precise understanding of the posterior density can be obtained by noting its con-
nection to the multivariate t-density. Before looking at this connection, let us briefly recall
t-densities.

1.1 t-densities

We first look at the univariate case.

1.1.1 Univariate t-density

The t-density is obtained by changing the scale of a normally distributed random variable
through an independent chi-squared distributed random variable. More precisely, suppose
X has the N(µ, σ2) distribution. First write

X = µ+ (X − µ).
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Now consider an independent random variable V such that

V ∼ χ2
v.

Recall that χ2
v is the same as the Gamma(v/2, 1/2) distribution so that

fV (x) ∝ x
v
2
−1e−x/2I{x > 0}.

We now change the scale of X using V to create a new random variable T by

T := µ+
X − µ√

V
v

. (4)

The distribution of T will be denoted by tv(µ.σ
2) (here v is known as the degrees of freedom).

The density of T can be derived as follows:

fT (y) =

∫ ∞

0
fT |V=x(y)fV (x)dx.

Observe now that

T | V = x = µ+
X − µ√

x
v

∼ N
(
µ, σ2 v

x

)
so that

fT |V=x(y) =

√
x√

2πσ
√
v
exp

(
− x

2σ2v
(y − µ)2

)
.

As a result

fT (y) =

∫ ∞

0
fT |V=x(y)fV (x)dx

∝
∫ ∞

0

√
x√

2πσ
√
v
exp

(
− x

2σ2v
(y − µ)2

)
x

v
2
−1e−x/2dx

∝
∫ ∞

0
x

v
2
− 1

2 exp

(
−x

2

(
1 +

(y − µ)2

vσ2

))
dx.

The change of variable

t = x

(
1 +

(y − µ)2

vσ2

)
now leads to

fT (y) ∝
1(

1 + (y−µ)2

vσ2

) v+1
2

∫ ∞

0
t
v
2
−1e−t/2dt ∝ 1(

1 + (y−µ)2

vσ2

) v+1
2

.

Therefore the density corresponding to the tv(µ, σ
2) distribution is proportional to

y 7→ 1(
1 + (y−µ)2

vσ2

) v+1
2

.

It is useful to note that when the degrees of freedom v is large, the distribution tv(µ, σ
2) is

very close to the normal distribution N(µ, σ2). There are many ways of seeing this. One
way is to note that the mean and variance of V ∼ χ2

v are given by v and 2v respectively.
This implies that

E
(
V

v

)
= 1 and var

(
V

v

)
=

2v

v2
=

2

v
.

Thus when v is large, the random variable V
v has mean 1 and very small variance so that V

v

will be very close to 1 with very high probability. As a result, the scale change by
√
V/v in

(4) has little effect so that T will have the same distribution as X ∼ N(µ, σ2).
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