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In this lecture, we shall revisit sines and cosines and discuss a high-dimensional model
involving sinusoids (there will be connections to the high-dimensional regression models that
we studied last week; even though the main model for this week will be somewhat different
from those).

1 Recap: Sunspots Data

In order to motivate the model that we shall study today, consider the annual sunspots
dataset yt that we previously looked at multiple times in this class.

Previously (e.g., Lecture 8), we used the following models for the sunspots data:

yt = β0 + β1 cos(2πft) + β2 sin(2πft) + εt (1)

yt = β0 + β1 cos(2πf1t) + β2 sin(2πf1t) + β3 cos(2πf2t) + β4 sin(2πf2t) + εt (2)

yt = β0+β1 cos(2πf1t)+β2 sin(2πf1t)+β3 cos(2πf2t)+β4 sin(2πf2t)+β5 cos(2πf3t)+β6 sin(2πf3t)+εt
(3)

In all these models, εt ∼ N(0, σ2). f, f1, f2, f3 represent unknown frequency parameters.
These models are helpful for understanding certain aspects of the sunspots data. For exam-
ple, model (1), when fitted to the data, gave f ≈ 1/11 which corresponds to the solar cycle.
Models (2) and (3) can give reasonable forecasts of the number of sunspots in future years.

In spite of these utilties, these models do not capture many important characteristics of the
sunspots dataset. For example, if we generate simulated data ysimulated

1 , . . . , ysimulated
n from

any of these models (with the parameters β’s, f ’s and σ fixed at the estimates obtained from
the sunspots data), these simulated datasets visually look quite different from the actual
sunspots data. The sunspots dataset will have well-defined peaks and the gaps between the
peaks varies (roughly around 11) from one cycle to another. The simulated datasets will not
have such clear peaks.

2 High-dimensional Regression with Sinusoids

One natural attempt to fix issues with the low dimensional models (1), (2) and (3) is to
include sinusoid terms for all possible frequencies. There are, in general, infinitely many
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possible values of frequences (in the range (0, 0.5]) but we shall, for simplicity, stick to Fourier
frequencies. Recall that, when n is odd, the Fourier frequencies are 1/n, 2/n, . . . ,m/n where
m equals (n − 1)/2. When n is even, 1/2 is also a Fourier frequency. We shall stick to the
case where n is odd for simplicity.

The high-dimensional analogue of (1), (2), (3) is (note again that n is odd and m =
(n− 1)/2)

yt = β0 +
m∑
j=1

(β1j cos(2π(j/n)t) + β2j sin(2π(j/n)t)) + εt, (4)

where again εt
i.i.d∼ N(0, σ2). We can write this model in matrix form as

y = Xβ + ε

where

X =



1 cos(2π(1/n)1) sin(2π(1/n)1) · · · cos(2π(m/n)1) sin(2π(m/n)1)
1 cos(2π(1/n)2) sin(2π(1/n)2) · · · cos(2π(m/n)2) sin(2π(m/n)2)
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
1 cos(2π(1/n)n) sin(2π(1/n)n) · · · cos(2π(m/n)n) sin(2π(m/n)n)

 ,

and β is the n × 1 vector with components β0, β11, β21, . . . , β1m, β2m. The number of these
coefficient parameters is n so this is a high-dimensional regression model.

If we fit this model via least squares without any regularization by minimizing ‖y−Xβ‖2,
we would obtain a perfect fit to the data for the choice of parameters:

β̂0 = ȳ β̂1k =
2

n

n∑
t=1

yt cos

(
2π
k

n
t

)
β̂2k =

2

n

n∑
t=1

yt sin

(
2π
k

n
t

)
.

These can be derived from the orthogonality properties of sinusoids that we discussed pre-
viously in Lectures 6 and 7. One can also write β̂0, β̂1k, β̂2k, 1 ≤ k ≤ m in terms of the DFT
b0, . . . , bn−1 of yt.

To prevent overfitting and to obtain something meaningful, we need to add some kind
regularization to the high-dimensional model (4). Last week, we look at the ridge and
LASSO regularization in high-dimensional linear regression models. In the context of (4),
the ridge estimator is given by minimizing

n∑
t=1

yt − β0 − m∑
j=1

(β1j cos(2π(j/n)t) + β2j sin(2π(j/n)t))

2

+ λ

m∑
j=1

(
β21j + β22j

)
. (5)

The motivation for this estimator is a desire to obtain estimates of β for which β1j , β2j are
somewhat small. In the case of the change of slope model considered last week, smallness of
the β-coefficients leads to smooth fits to the data which can be treated as smooth estimates
of the underlying trend in the data. However, in the context of the sinusoidal model (4), it
is unclear why one would want to obtain small values for β1j , β2j . In fact, for the sunspots
data, we expect that β1j , β2j would not be small for some special frequencies (e.g., frequencies
j/n which are close to 1/11). This suggests that the ridge estimator (5) may not yield any
anything useful insights when applied to the sunspots dataset.
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From our discussion in the last lecture, the ridge estimator (5) can also be understood
from the Bayesian perspective under the prior:

β11, β21, β12, β22, . . . , β1m, β2m
i.i.d∼ N(0, τ2). (6)

Again, this model makes sense in the change-of-slope ReLU model from last week because
it implies that the underlying trend function is smooth but the data, because of somewhat
random fluctuations, looks noisy. In the present sinusoidal case, (6) is less justifiable.

3 The Spectrum Model

The spectrum model (described below) is obtained by making two changes to (4) and (6).
First the additive error εt term is dropped from (4). Presence of this term imparts additional
random fluctuations to the sinusoidal term, making the model not appropriate for datasets
such as the sunspots which appear to not have random fluctuations. This leads to the model:

yt = β0 +

m∑
j=1

(β1j cos(2π(j/n)t) + β2j sin(2π(j/n)t)) (7)

Secondly, the prior assumption (6) is changed to the following: β11, β21, β12, β22, . . . , β1m, β2m
are all independent with

β11, β21
i.i.d∼ N(0, τ21 ), β12, β22

i.i.d∼ N(0, τ22 ), . . . , β1m, β2m
i.i.d∼ N(0, τ2m).

In other words, β1j , β2j
i.i.d∼ N(0, τ2j ) for j = 1, . . . ,m. Instead of using a single τ2, we now

use τ21 , . . . , τ
2
m so one variance parameter each for the sinusoid at each frequency j/n.

Taken together the parameters τ21 , . . . , τ
2
m are known as the spectrum of the model. The

spectrum represents the variances of the random variables that determine the amplitudes of
the sinusoidal terms at the Fourier frequencies (see for example page 8 of the book “Spectral
analysis for univariate time series” by Percival and Walden).

Under these modeling assumptions, the variance of yt is given by:

var(yt) =
m∑
j=1

var (β1j cos(2π(j/n)t) + β2j sin(2π(j/n)t))

=

m∑
j=1

[
var(β1j) cos2(2π(j/n)t) + var(β1j) sin2(2π(j/n)t)

]
=

m∑
j=1

τ2j
(
cos2(2π(j/n)t) + sin2(2π(j/n)t)

)
=

m∑
j=1

τ2j .

τ2j represents how much contribution the corresponding frequency j/n has in the overall

variance structure of yt. If τ2j is large for a specific j, the corresponding frequency j/n has

a strong contribution to the variance of the data. If τ2j is small, the contribution of that
frequency is small.

The sequence {τ2j } provides a spectral representation of the time series in the sense that
it describes the distribution of variance across frequencies.

We shall refer to (7) as the spectrum model. In the next lecture, we shall look at an
alternative way of thinking about this model in terms of the DFT of the data.
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The spectrum model consists of the unknown parameters β0 and the spectrum given by
the variances τ21 , . . . , τ

2
m. Of these β0 is not really a parameter as it simply equals ȳ. To see

this, just average both sides of (7) with respect to t and note that

n∑
t=1

cos(2π(j/n)t) =

n∑
t=1

sin(2π(j/n)t) = 0

which gives β0 = ȳ. In other words, (7) is equivalent to

yt − ȳ =

m∑
j=1

(β1j cos(2π(j/n)t) + β2j sin(2π(j/n)t)) with β1j , β2j
i.i.d∼ N(0, τ2j ).

τ21 , . . . , τ
2
m denote the unknown parameters in this model which will be estimated from the

data (we shall see how to do this in the next lecture). Data generated from this model will
look differently depending on the exact values of τ21 , . . . , τ

2
m. Here are some examples.

1. Suppose τ2j equals a constant when j/n lies in a fixed interval [1/9, 1/13] and 0 other-
wise:

τ2j =

{
c if j

n ∈
[
1
9 ,

1
13

]
0 otherwise

Then data generated from this model look periodic with clear peaks. The gaps between
the peaks will change from cycle to cycle (some gaps will be 10, some 11, some 9 etc.).

2. Suppose τ2j increases with j. Then the higher frequency sinusoids will dominate, and
the data will look quite wiggly.

3. Suppose τ2j decreases with j. Then the lower frequency sinusoids with dominated,
giving the data a smoother appearance.
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