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For a given time series y1, . . . , yn, we consider the model:

yt = β0 + β1(t− 1) + β2ReLU(t− 2) + · · ·+ βn−1ReLU(t− (n− 1)) + ϵt (1)

where, as always, ϵt
i.i.d∼ N(0, σ2). Here ReLU(t − c) = (t − c)+ equals 0 if t ≤ c and equals

(t− c) if t > c.

The unknown parameters in this model are β0, β1, . . . , βn−1 as well as σ. The model (1)
should be compared with the following model that we studied in the previous lecture:

yt = β0 + β1(t− 1) + β2ReLU(t− c1) + β3ReLU(t− c2) + · · ·+ βk+1ReLU(t− ck) + ϵt. (2)

Here are the main differences between these two models:

1. The model (2) will be used with a small value of k (such as 1, 2, 3, 4). This makes it a
low-dimensional model. On the other hand, the number of unknown parameters in (1)
equals n+ 1 which is quite large. So (1) is an example of a high-dimensional model.

2. (2) is a nonlinear model because of the presence of the parameters c1, . . . , ck. On the
other hand, there are no such nonlinear parameters in (1) which makes it a linear
regression model.

To summarize, (2) is a low-dimensional nonlinear regression model, while (1) is a high-
dimensional linear regression model.

1 Parameter Interpretation in (1)

Let µt denote the deterministic part of model (1), i.e.,

µt = β0 + β1(t− 1) + β2ReLU(t− 2) + β3ReLU(t− 3) + · · ·+ βn−1ReLU(t− (n− 1)). (3)

The model (1) can then be written as

yt = µt + ϵt with ϵt
i.i.d∼ N(0, σ2).

Here µt represents the trend function that we aim to estimate from the data. For illustration,
consider yt to be the logarithm of California’s population in year t. The trend function µt

captures the underlying systematic pattern in the population growth, while ϵt accounts for
random fluctuations around this trend.
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Sometimes, we can also interpret µt as the ’actual’ data and ϵt as the measurement error
causing µt to be observed as yt. For example, in the population example, µt would represent
the actual population (on log scale) while yt would represent our noisy measurement of it.

The parameters β0, β1, β2, . . . , βn−1 can be interpreted in terms of µt as follows. We will
focus on the population example here for simplicity. Plugging t = 1 in (3), we get

β0 = µ1. (4)

So β0 can be interpreted as the actual population on log scale (or the value of the trend
function) at time t = 1. Plugging t = 2 in (3), we get µ2 = β0 + β1 = µ1 + β1 so that

β1 = µ2 − µ1.

If Pt = exp(µt) denotes the population on the original scale, then

β1 = logP2 − logP1 = log
P2

P1
≈ P2

P1
− 1 =

P2 − P1

P1
.

Here we used the fact that log x ≈ x − 1 if x is close to 1. In other words, 100β1 can be
interpreted as the percentage growth of the population from year 1 to year 2.

For β2, let us plug t = 3 in (3) to get µ3 = β0 + 2β1 + β2. Replacing β0 = µ1 and
β1 = µ2 − µ1, we obtain

β2 = (µ3 − µ2)− (µ2 − µ1).

This means that

100β2 ≈ (percentage change from year 2 to 3)− (percentage change from year 1 to 2)

Continuing this way for t = 4, 5, ..., n, we get

βt = (µt+1 − µt)− (µt − µt−1)

so that

100βt ≈ (percentage change from year t to (t+ 1))−(percentage change from year (t− 1) to t) .

For example, suppose

β0 = 7.3 β1 = 0.04 β2 = −0.001 β3 = −0.0005 etc.

The interpretation then is that µt started with the value µ1 = exp(7.3) ≈ 1480 (if the
population units are in thousands of persons, this means that the population at time 1 was
1.48 million). From year 1 to year 2, the population grew by 4%. From year 2 to year 3,
the population grew by 4 − 0.1 = 3.9%. From year 3 to year 4, the population grew by
3.9− 0.05 = 3.85%, and so on.

It is important to understand that the parameters β2, . . . , βn−1 are on a different scale
(units) compared to β0 and β1. β0 is in the scale of the data, 100β1 represents percent
change, while 100βj for j ≥ 2 represents the change in percent change.

We next study strategies for estimating the unknown parameters β0, β1, . . . , βn−1 (as well
as σ) from the observed time series y1. . . . .yn.
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2 (Unregularized) MLE

Since (1) is a linear regression model, we can estimate the coefficients in the usual way by
the MLE, or equivalently, least squares by minimizing

n∑
t=1

(yt − β0 − β1(t− 1)− β2ReLU(t− 2)− · · · − βn−1ReLU(t− (n− 1)))2

over all β0, . . . , βn−1. The smallest value achievable in the above minimization will be the
RSS. The MLE of σ is then given by

σ̂MLE =

√
RSS

n
.

Since there are as many coefficients as there are data points, this approach will give a perfect
fit to the data leading to RSS = 0. In fact, from the work done in the previous section, the
values of β0, . . . , βn−1 which minimize the sum of squares are given by:

β0 = y1 β1 = y2 − y1 βj = (yj+1 − yj)− (yj − yj−1)

for j = 2, . . . , n − 1. This will lead to the estimated trend function µt = yt for all t. Also
the MLE of σ will be zero. The unbiased estimate of σ (that we previousy used in linear
regression) will not exist because it will equal

√
RSS/(n− p) with p = n.

To summarize, these estimates will overfit the data, and will not produce a trend estimate
that is simpler than the observed data.

3 Regularization

To produce useful estimates in cases where the MLE overfits, one employs the idea of reg-
ularization. We will discuss two ways of doing this: Ridge regularization and LASSO regu-
larization.

The Ridge estimate of β will be denoted by β̂ridge(λ) and is given by the minimizer of:

n∑
t=1

(yt − β0 − β1(t− 1)− β2ReLU(t− 2)− · · · − βn−1ReLU(t− (n− 1)))2

+ λ
(
β2
2 + β2

3 + · · ·+ β2
n−1

)
.

(5)

In other words, β̂ridge(λ) minimizes a new criterion function that is obtained by adding the
penalty term λ(

∑n−1
j=2 β

2
j ) to the least squares criterion.

Here λ denotes a tuning parameter. Different choices of λ give rise to different ridge
estimators β̂ridge(λ). When λ = 0, the penalty term is not used in (5) so that β̂ridge(λ)
coincides with the unregularized least squares estimator. If λ is set to be very large, then
the penalty term dominates the objective function (5) and then the first two components of
β̂ridge(λ) coincide with linear regression while the last n − 2 components are simply set to
zero.

The LASSO estimate of β will be denoted by β̂lasso(λ) and is given by the minimizer of:

n∑
t=1

(yt − β0 − β1(t− 1)− β2ReLU(t− 2)− · · · − βn−1ReLU(t− (n− 1)))2

+ λ (|β2|+ |β3|+ · · ·+ |βn−1|) .
(6)
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In other words, β̂lasso(λ) minimizes a new criterion function that is obtained by adding
the penalty term λ(

∑n−1
j=2 |βj |) to the least squares criterion. As in the case of the ridge

estimator, when λ = 0, the penalty term is not used in (6) so that β̂ridge(λ) coincides with
the unregularized least squares estimator. If λ is set to be very large, then the penalty term
dominates the objective function (6) and then the first two components of β̂ridge(λ) coincide
with linear regression while the last n− 2 components are simply set to zero.

The only difference between the ridge and lasso is in the penalty term:
∑

j β
2
j vs

∑
j |βj |.

We will discuss computation and the differences between these estimators in the next lecture.

Note that, in usual implementations of ridge and lasso, the penalty is usually placed on all
the coefficients (with the possible exception of the intercept). Here we are only placing it on
β2, . . . , βn−1. As we saw in the interpretation section, β1 is quite different (both in having
different units and also being somewhat bigger in size) compared to β2, . . . , βn−1. It would
not make sense in this example to include β1 in the penalty term.
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