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1 ARIMA Models

ARIMA models are our next topic of study. ARIMA is an acronym standing for Auto-
Regressive Integrated Moving Average. We will first study Auto-Regressive (AR) models,
then we shall include the MA part to get ARMA models, finally we see what “Integrated”
means.

2 AR (Auto-Regressive) Models

The AR model of order p (referred to by AR(p)) is given by

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + εt (1)

for t = p+ 1, . . . , n. In matrix notation,

Y = Xβ + ε

where

Y =



yp+1

yp+2

·
·
·
yn

 X =



1 yp yp−1 · · · y1
1 yp+1 yp · · · y2
1 yp+2 yp+1 · · · y3
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 yn−1 yn−2 · · · yn−p


β =



φ0
φ1
φ2
·
·
·
φp


ε =



εp+1

εp+2

·
·
·
εn


This regression model is called AutoRegression because the responses as well as the covariates
are both formed from the same time series: the time series yt is regressed on its own lagged
values yt−1, . . . , yt−p.

The parameters φ0, . . . , φp are estimated in the usual way by minimizing ‖Y −Xβ‖2. Let

the estimates by φ̂0, . . . , φ̂p.

AR models are useful for prediction. For predicting yn+1, we plug t = n+ 1 in (1) to get

yn+1 = φ̂0 + φ̂1yn + φ̂2yn−1 + · · ·+ φ̂pyn+1−p.
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Note that yn, yn−1, . . . , yn+1−p are all observed and they are the last p observations. For
predicting yn+2, we plug t = n+ 2 in (1) to get

yn+2 = φ̂0 + φ̂1yn+1 + φ̂2yn + · · ·+ φ̂pyn+2−p.

In the above, yn+1 is not observed. But we can replace it by the predicted value ŷn+1. This
gives

yn+2 = φ̂0 + φ̂1ŷn+1 + φ̂2yn + · · ·+ φ̂pyn+2−p.

More generally, we predict yn+i by the recursion

ŷn+i = φ̂0 + φ̂1ŷn+i−1 + · · ·+ φ̂pŷn+i−p for i = 1, 2, . . .

where the recursion is initialized with

ŷj = yj for j = n, n− 1, . . . , n+ 1− p.

We will look at AR models in more details in the coming lectures. Today, we shall provide
a motivation for their use through the sunspots dataset. This was how the AR models were
originally invented by Yule [1].

3 AR Models for the Sunspots Data

For the sunspots dataset, we previously employed the model

yt = β0 + β1 cos(2πft) + β2 sin(2πft) + εt for t = 1, . . . , n (2)

We used a Bayesian method to infer the frequency parameter f (which is the main parameter
of interest) and this led to an estimated period of close to 11 years (which is often cited as
the period of the solar cycle). Note however that (2) is not ideal for the sunspots dataset for
at least two reasons: (a) the fit to the data is not very good (some of the oscillations have
a much higher amplitude than that explained by the single sinusoid), (b) data generated
from the model (2) look much more “noisy” compared to the actual sunspots data. Starting
with these observations, Yule [1] proposed an alternative model that is also based on a single
sinuosoid. This alternative model is based on the idea of AR modeling.

Yule started with the following basic observation. Let st denote the sinusoid:

st = β0 + β1 cos(2πft) + β2 sin(2πft) (3)

The same sinusoid can be understood as the solution to a specific difference equation. To
derive the difference equation, let us first note that, in continuous time, s(t) satisfies

s′′(t) = −(2πf)2 (β1 cos(2πft) + β2 sin(2πft)) = −(2πf)2 (s(t)− β0) . (4)

In discrete time (where t ∈ {. . . ,−2,−1, 0, 1, 2, . . . }), the sequence (3) satisfies the following
difference equation that is analogous to (4):

st − 2st−1 + st−2 = 2(cos(2πf)− 1) (st−1 − β0) . (5)

To see this, note that (below we take ω = 2πf for notational simplicity)

st − 2st−1 + st−2 = β1 (cos(ωt)− 2 cos(ω(t− 1)) + cos(ω(t− 2)))

+ β2 (sin(ωt)− 2 sin(ω(t− 1)) + sin(ω(t− 2)))

2



Writing A = ω(t− 1) and B = ω, we get

cos(ωt)− 2 cos(ω(t− 1)) + cos(ω(t− 2)) = cos(A+B)− 2 cosA+ cos(A−B)

= 2 cosA(cosB − 1)

= 2(cosω − 1) cos(w(t− 1))

and similarly

sin(ωt)− 2 sin(ω(t− 1)) + sin(ω(t− 2)) = 2(cosω − 1) sin(ω(t− 1)).

This proves

st − 2st−1 + st−2 = 2(cosω − 1) (β1 cos(ω(t− 1)) + β2 sin(ω(t− 1)))

= 2(cosω − 1)(st−1 − β0)

thereby establishing (5).

The converse is also true in the sense that every solution {st} to the difference equation
(5) say, for t = 1, 2, 3, . . . , with given values of s1 and s2 (initial conditions) is of the form
(3) for some β1 and β2. To see this, let gt = st − β0 and note that {gt} satisfies

gt − 2gt−1 + gt−2 = 2(cosω − 1)gt−1.

We find β1 and β2 such that (note again that ω = 2πf)

ht := β1 cos(ωt) + β2 sin(ωt)

matches gt for t = 1, 2. Now if gt−1 = ht−1 and gt−2 = ht−2, then

gt = (2 cosω)gt−1 − gt−2
= (2 cosω)ht−1 − ht−2
= (2 cosω) (β1 cos(ω(t− 1)) + β2 sin(ω(t− 1)))− (β1 cos(ω(t− 2)) + β2 sin(ω(t− 2)))

= β1 (2 cosω cos(ω(t− 1))− cos(ω(t− 2))) + β2 (2 cosω sin(ω(t− 1))− sin(ω(t− 2))) .

Verify that
2 cosω cos(ω(t− 1))− cos(ω(t− 2)) = cos(ωt)

and
2 cosω sin(ω(t− 1))− sin(ω(t− 2)) = sin(ωt),

which gives
gt = β1 cos(ωt) + β2 sin(ωt) = ht.

We thus proved that if gt−1 = ht−1 and gt−2 = ht−2, then gt = ht. Using this for t = 1, 2, . . .
proves that (3) is the unique solution to (5).

To summarize, an alternative way of describing a sinusoid of frequency ω = 2πf is via the
difference equation (5) which is equivalent to

st = (2 cosω)st−1 − st−2 + 2(1− cosω)β0.

Based on this equation, Yule proposed the model:

yt = φ0 + φ1yt−1 − yt−2 + εt (6)

with two parameters φ0 and φ1 (and the additional noise parameter σ in εt
i.i.d∼ N(0, σ2)).

Note that (6) is also a single sinusoid plus noise model but now the noise is in a different
place.
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To better understand the difference between (6) and the earlier model (2), consider the
following physical situation where sinusoids naturally arise (see e.g., page 2 of the Fourier
Analysis book by Stein and Shakarchi). Consider a mass m that is attached to a horizontal
spring, which itself is attached to fixed wall, and assume that the system lies on a frictionless
surface. Suppose that β0 is the location of the center of the mass when the spring is neither
compressed or stretched. When the spring is compressed or stretched and released, the mass
undergoes simple harmonic motion.

Let y(t) denote the displacement of the mass at time t. Hooke’s law says that the force
exerted by the spring on the mass is given by F = −κ (y(t)− β0) where κ > 0 is the spring
constant. By Newton’s law (note that the acceleration is given by y′′(t)), we have

−κ (y(t)− β0) = my′′(t)

This is same as

y′′(t) = −ω2 (y(t)− β0) where ω :=

√
k

m

whose general solution is the sinusoid y(t) = β0+β1 cos(ωt)+β2 sin(ωt). In the context of this
physical situation, the two different noisy sinusoid models ((2) and (6)) can be understood
as follows. We are taking measurements of the displacement yt at various times t.

Model (2): Here our measurements are noisy and every measurement is corrupted by an
unknown noise which we are terming εt and modeling as N(0, σ2).

Model (6): Here there is no measurement error and our measurement mechanism is
perfect. However the actual oscillation of the mass is not perfectly sinusoidal and is affected
by noise. For example, imagine, as Yule put it, that some kids are randomly throwing stones
at the mass (sometimes from the left and sometimes from the right) while it is oscillating.

It is very interesting to note that observations generated from Model (6) are much smoother
compared to observations generated from Model (2). Yule used this to argue that (6) is a
better model for the sunspots data compared to (2).

The AR(2) model is:
yt = φ0 + φ1yt−1 + φ2yt−2 + εt (7)

(6) can be seen as a simpler version of the above model where the φ2 parameter is set to the
value −1. Yule fit both models ((6) and (7)) to the sunspots dataset. It is interesting that
these two models give different predictions for future sunspots values: (6) gives sinusoidal
predictions while (7) gives damped sinusoidal predictions. In the coming lectures, we shall
discuss how different parameter settings for AR models lead to different predictions.

A very nice account of Yule’s influential 1927 paper is Chapter 6 of the 2011 book “The
Foundations of Modern Time Series Analysis” by T. C. Mills. (available for free from the
library website). Yule’s paper Yule [1] itself is available freely online.
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