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1 Recap from last lecture

In the last lecture, we discussed fitting the sinusoidal model:

yt = β0 + β1 cos(2πft) + β2 sin(2πft) + ϵt with ϵt
i.i.d∼ N(0, σ2) (1)

to the observed time series y1, . . . , yn. We looked at both the MLE and Bayesian inference
for estimating the unknown parameters f, β0, β1, β2, σ. The main parameter is f which we
reasoned can be taken to lie in the interval [0, 1/2] (this is because the observed times are
1, . . . , n).

In both the MLE and Bayesian approaches, a key role for inferring f is played by the
following criterion function:

RSS(f) := min
β0,β1,β2

n∑
t=1

(yt − β0 − β1 cos(2πft)− β2 sin(2πft))
2 = ∥y −Xf β̂f∥2

where

y =


y1
·
·
·
yn

 and Xf =


1 cos(2πf(1)) sin(2πf(1))
· · ·
· · ·
· · ·
1 cos(2πf(n)) sin(2πf(n))

 and β̂f = (XT
f Xf )

−1XT
f y.

RSS(f) is simply the residual sum of squares in the linear regression model obtained by
fixing the frequency parameter f . The MLE for f is obtained by minimizing RSS(f) over
f ∈ [0, 1/2] while the Bayesian posterior is given by:

I{0 < f < 1/2}|XT
f Xf |−1/2

(
1

RSS(f)

)(n−3)/2

.

We discussed how the MLE can be calculated (approximately) and how the Bayesian poste-
rior can be evaluated (approximately) by taking a fine grid of values of f inside the domain
[0, 1/2] (for the Bayesian posterior, it is important to not go too close to the boundary values
0 and 0.5 because the term XT

f Xf will be close to singular for such f).
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2 Fourier Frequencies and Computation of RSS(f)

RSS(f) describes how well the sinusoid with frequency f fits the observed data y1, . . . , yn. A
plot of RSS(f) over different frequencies f is frequently used as an exploratory data analysis
tool for identifying “which periodicities are present in the data”. This tool is often used even
when one is not interested in eventually fitting the simple model (1) to the observed data.

For computing RSS(f), as discussed in the previous lecture, we need a grid of values for
f . The most commonly used grid is given by:

F :=

{
0,

1

n
,
2

n
, . . . ,

[n/2]

n

}
(2)

where [n/2] is the largest integer smaller than or equal to n/2.

A frequency of the form j/n where j ∈ {0, 1, 2, . . . , n− 1} and n is the observed data size
is called a Fourier Frequency. So the grid (2) consists of all Fourier frequencies that are
in the range [0, 1/2].

The main reason for taking the grid to consist of Fourier Frequencies is that RSS(f), f ∈ F
can be computed very efficiently (in time O(n log n)) using a classical algorithm known as
the Fast Fourier Transform (FFT). We explain the high level details behind this fact today
(without going into the workings of the FFT algorithm).

3 Formula for RSS(f) when f is a Fourier Frequency

When f is a Fourier Frequency, one can write down a more explicit formula for RSS(f). For
this, first note that for every f ,

RSS(f) = ∥y −Xf β̂f∥2

= (y −Xf β̂f )
T (y −Xf β̂f ) = yT y − β̂T

f X
T
f y − yTXf β̂f + β̂T

f X
T
f Xf β̂f .

Plugging in β̂f = (XT
f Xf )

−1XT
f y above, we get

RSS(f) = yT y − yTXf (X
T
f Xf )

−1XT
f y − yTXf (X

T
f Xf )

−1XT
f y

+ yTXf (X
T
f Xf )

−1XT
f Xf (X

T
f Xf )

−1XT
f y

= yT y − yTXf (X
T
f Xf )

−1XT
f y − yTXf (X

T
f Xf )

−1XT
f y

+ yTXf (X
T
f Xf )

−1XT
f y

= yT y − yTXf (X
T
f Xf )

−1XT
f y

Now

XT
f Xf =

 n
∑n

t=1 cos(2πft)
∑n

t=1 sin(2πft)∑n
t=1 cos(2πft)

∑n
t=1 cos

2(2πft)
∑n

t=1 cos(2πft) sin(2πft)∑n
t=1 sin(2πft)

∑n
t=1 cos(2πft) sin(2πft)

∑n
t=1 sin

2(2πft).


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Now suppose that f ∈ (0, 0.5) and suppose that f is a Fourier frequency i.e., it is of the form
f = j/n for some integer j. Then it turns out that

n∑
t=1

cos(2πft) = 0
n∑

t=1

sin(2πft) = 0

n∑
t=1

cos2(2πft) =
n

2

n∑
t=1

sin2(2πft) =
n

2

n∑
t=1

cos(2πft) sin(2πft) = 0

(3)

As a result, for such f ,

XT
f Xf =

n 0 0
0 n/2 0
0 0 n/2

 so that (XT
f Xf )

−1 =

1/n 0 0
0 2/n 0
0 0 2/n


This gives

yTXf (X
T
f Xf )

−1XT
f y

= yT


1 cos(2πf(1)) sin(2πf(1))
· · ·
· · ·
· · ·
1 cos(2πf(n)) sin(2πf(n))


1/n 0 0

0 2/n 0
0 0 2/n

 1 · · · 1
cos(2πf(1)) · · · cos(2πf(n))
sin(2πf(1)) · · · sin(2πf(n))

 y

=
(∑

t yt
∑

t yt cos(2πft)
∑

t yt sin(2πft)
)1/n 0 0

0 2/n 0
0 0 2/n

 ∑
t yt∑

t yt cos(2πft)∑
t yt sin(2πft)


=

1

n

(∑
t

yt

)2

+
2

n

(∑
t

yt cos(2πft)

)2

+
2

n

(∑
t

yt sin(2πft)

)2

= nȳ2 +
2

n

(∑
t

yt cos(2πft)

)2

+
2

n

(∑
t

yt sin(2πft)

)2

.

Therefore for Fourier frequencies in the range (0, 0.5), we get

RSS(f) = yT y − nȳ2 − 2

n

(∑
t

yt cos(2πft)

)2

− 2

n

(∑
t

yt sin(2πft)

)2

or equivalently

RSS(f) =
∑
t

(yt − ȳ)2 − 2

n

(∑
t

yt cos(2πft)

)2

− 2

n

(∑
t

yt sin(2πft)

)2

(4)

When f = 0 and f = 1/2, the above formula needs to be slightly modified. When f = 0,
the sinusoidal model (1) simply becomes:

yt = β0 + β1 + ϵt with ϵt
i.i.d∼ N(0, σ2).

There is only one effective parameter coefficient parameter (β0 + β1) here which will be
estimated by ȳ so that RSS becomes

RSS(0) =
∑
t

(yt − ȳ)2. (5)
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When f = 1/2 and n is even (when n is odd, 1/2 cannot be a Fourier frequency so it will
not be considered), the model (1) becomes

yt = β0 + β1 cos(πt) + ϵt = β0 + β1(−1)t + ϵt.

For this model, it is easy to check that

XTX =

(
n 0
0 n

)
so that

RSS(1/2) =
∑
t

(yt − ȳ)2 − 1

n

(∑
t

yt(−1)t

)2

(6)

Let us not worry too much about the edge cases f = 0 and f = 1/2, and focus on the formula
(4). Note again that this formula holds whenever f ∈ (0, 0.5) and f is a Fourier frequency
(i.e., nf is an integer).

4 Proof of the identities in (3)

Note that 0 < f < 1/2 and that nf is an integer.

n∑
t=1

cos(2πft)

=
1

2

n∑
t=1

e2πift +
1

2

n∑
t=1

e−2πift

=
1

2

e2πif

e2πif − 1

(
e2πinf − 1

)
+

1

2

e−2πif

e−2πif − 1

(
e−2πinf − 1

)
=

1

2

e2πif

e2πif − 1
(cos(2πnf)− 1 + i sin(2πnf)) +

1

2

e−2πif

e−2πif − 1
(cos(2πnf)− 1− i sin(2πnf))

= 0

because cos(2πnf) = cos(2π(integer)) = 1 and sin(2πnf) = sin(2π(integer)) = 0.

Similarly

n∑
t=1

sin(2πft)

=
1

2i

n∑
t=1

e2πift − 1

2i

n∑
t=1

e−2πift

=
1

2i

e2πif

e2πif − 1

(
e2πinf − 1

)
− 1

2i

e−2πif

e−2πif − 1

(
e−2πinf − 1

)
=

1

2i

e2πif

e2πif − 1
(cos(2πnf)− 1 + i sin(2πnf))− 1

2i

e−2πif

e−2πif − 1
(cos(2πnf)− 1− i sin(2πnf))

= 0

Next note

n∑
t=1

cos2(2πft) =
n∑

t=1

1 + cos(4πft)

2
=

n

2
+

1

2

n∑
t=1

cos(4πft)
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and
n∑

t=1

sin2(2πft) =

n∑
t=1

1− cos(4πft)

2
=

n

2
− 1

2

n∑
t=1

cos(4πft).

The quantity
∑

t cos(4πft) which appears in both the above terms turns out to be zero
because

n∑
t=1

cos(4πft)

=
1

2

n∑
t=1

e4πift +
1

2

n∑
t=1

e−4πift

=
1

2

e4πif

e4πif − 1

(
erπinf − 1

)
+

1

2

e−4πif

e−4πif − 1

(
e−4πinf − 1

)
=

1

2

e4πif

e4πif − 1
(cos(4πnf)− 1 + i sin(4πnf)) +

1

2

e−4πif

e−4πif − 1
(cos(4πnf)− 1− i sin(4πnf))

= 0

because cos(4πnf) = cos(4π(integer)) = 1 and sin(4πnf) = sin(4π(integer)) = 0.

Finally
n∑

t=1

cos(2πft) sin(2πft)

=

n∑
t=1

sin(4πft)

=
1

2i

n∑
t=1

e4πift − 1

2i

n∑
t=1

e−4πift

=
1

2i

e4πif

e4πif − 1

(
erπinf − 1

)
− 1

2i

e−4πif

e−4πif − 1

(
e−4πinf − 1

)
=

1

2i

e4πif

e4πif − 1
(cos(4πnf)− 1 + i sin(4πnf))− 1

2i

e−4πif

e−4πif − 1
(cos(4πnf)− 1− i sin(4πnf))

= 0

The intermediate calculations above include the terms e2πif − 1 and e4πif − 1 in the denom-
inators. We need to make sure that these terms are not zero (otherwise the above proofs
would not be valid).

e2πif − 1 = cos(2πf)− 1 + i sin(2πf)

which cannot be zero because cos(2πf) < 1 for f ∈ (0, 0.5), and

e4πif − 1 = cos(4πf)− 1 + i sin(4πf)

which also cannot be zero because cos(4πf) < 1 for f ∈ (0, 0.5).

5 The Periodogram

Given a time series dataset y1, . . . , yn, its periodogram is the function I(f), 0 < f < 1/2,
defined as follows:

I(f) :=
1

n

(
n∑

t=1

yt cos(2πft)

)2

+
1

n

(
n∑

t=1

yt sin(2πft)

)2

for f ∈ (0, 0.5)
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From the formula (4), we have

RSS(f) =
∑
t

(yt − ȳ)2 − 2I(f) when f ∈ (0, 0.5) is a Fourier Frequency.

The periodogram I(f) can be written in the following alternative way:

I(f) =
1

n

∣∣∣∣∣
n∑

t=1

yte
−2πift

∣∣∣∣∣
2

where | · | denotes complex modulus. As we shall discuss in detail next lecture,

n∑
t=1

yt exp(−2πift)

(when f is a Fourier frequency) is closely related to the Discrete Fourier Transform (DFT)
of y1, . . . , yn. The DFT can be efficiently computed using the Fast Fourier Transform (FFT)
algorithm. This gives a way of computing I(f) and RSS(f) at Fourier frequencies efficiently.
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