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1 AutoRegressive Models

In the last lecture, we started discussing AutoRegressive models as a first step towards
learning the more general ARIMA models. Methodologically, AutoRegression is simply
regression of the observed time series on lagged versions of itself. Suppose the observed
dataset is y1, . . . , yn. From this data, we create a (n− p)× 1 vector Y and a (n− p)× (p+ 1)
design matrix X as follows:

Y =



yp+1

yp+2

·
·
·
yn

 X =



1 yp yp−1 · · · y1
1 yp+1 yp · · · y2
1 yp+2 yp+1 · · · y3
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 yn−1 yn−2 · · · yn−p


p here is an integer which represents the order of the AutoRegressive (AR) model. We
then regress Y on X (in the standard way using least squares or OLS) to obtain fitted
regression coefficients φ0, φ1, . . . , φp. Since the response variable is yt and the regressors are
1, yt−1, . . . , yt−p for t = p+ 1, . . . , n, the fitted regression model can be written as

yt = φ̂0 + φ̂1yt−1 + · · ·+ φ̂pyt−p. (1)

This is how data is typically analyzed in AutoRegression. In the next section, we shall write
down the structure of the AR model and we shall see how the above estimation procedure
is related to Maximum Likelihood.

One of the main uses of AR (and more generally ARIMA) models is for prediction (also
known as forecasting).

For predicting yn+1, we plug t = n+ 1 in (1) to get

yn+1 = φ̂0 + φ̂1yn + φ̂2yn−1 + · · ·+ φ̂pyn+1−p.

Note that yn, yn−1, . . . , yn+1−p are all observed and they are the last p observations. For
predicting yn+2, we plug t = n+ 2 in (1) to get

yn+2 = φ̂0 + φ̂1yn+1 + φ̂2yn + · · ·+ φ̂pyn+2−p.
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In the above, yn+1 is not observed. But we can replace it by the predicted value ŷn+1. This
gives

yn+2 = φ̂0 + φ̂1ŷn+1 + φ̂2yn + · · ·+ φ̂pyn+2−p.

More generally, we predict yn+i by the recursion

ŷn+i = φ̂0 + φ̂1ŷn+i−1 + · · ·+ φ̂pŷn+i−p for i = 1, 2, . . .

where the recursion is initialized with

ŷj = yj for j = n, n− 1, . . . , n+ 1− p.

When this method is applied on some time series datasets, the predictions obtained can
vary quite significantly with p. We will try to obtain some intuition for the structure of the
predictions later in this lecture.

2 The AR Model

Let us start with the AR(1) model (we will later address AR(p) for p ≥ 2).

The AR(1) model is given by:

yt = φ0 + φ1yt−1 + εt for t = 2, . . . , n. (2)

2.1 Detour: usual regression

The model (2) looks just like a usual regression model:

yi = β0 + β1xi + εi (3)

except we are using φ instead of β for the coefficients, and the index is now t as opposed to
i. Let us recall how one writes the likelihood (for parameter estimation) in (3). The data
is (xi, yi), i = 1, . . . ,m (m is the number of data points). The likelihood is the probability
density function of the data treated as a function of the parameters θ = (β0, β1, σ) (σ is the
standard deviation of the errors):

Likelihood for model (3) = fx1,y1,x2,y2,...,xn,yn|θ(x1, y1, . . . , xn, yn).

We first assume independence across i (i.e., (x1, y1), . . . , (xn, yn) are independent) to get

Likelihood for model (3) =
n∏
i=1

fxi,yi|θ(xi, yi).

Because the model (3) specifies an equation for yi in terms of xi, it is natural to condition
first on xi leading to:

Likelihood for model (3) =

n∏
i=1

fyi|xi,θ(yi)fxi|θ(xi).

Now we use the model equation to replace yi by β0 + β1xi + εi:

Likelihood for model (3) =

n∏
i=1

fβ0+β1xi+εi|xi,θ(yi)fxi|θ(xi)

=
n∏
i=1

fεi|xi,θ(yi − β0 − β1xi)fxi|θ(xi)
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We now assume that εi is independent of xi and that εi ∼ N(0, σ2). These result in

Likelihood for model (3) =
m∏
i=1

fεi|xi,θ(yi − β0 − β1xi)fxi|θ(xi)

=
m∏
i=1

fεi|θ(yi − β0 − β1xi)fxi|θ(xi)

=
m∏
i=1

1√
2πσ

exp

(
−(yi − β0 − β1xi)2

2σ2

)
fxi|θ(xi)

=

(
1√
2πσ

)m
exp

(
− 1

2σ2

m∑
i=1

(yi − β0 − β1xi)2
)

m∏
i=1

fxi|θ(xi).

How do we deal with the last term
∏m
i=1 fxi|θ(xi)? We simply assume that this term does

not depend on θ so it only becomes a constant (in terms of θ) multiplicative factor in the
likelihood that can be omitted leading to

Likelihood for model (3) ∝
(

1√
2πσ

)m
exp

(
− 1

2σ2

m∑
i=1

(yi − β0 − β1xi)2
)
.

This is the standard form of the likelihood in linear regression that we worked with previously
(see e.g., Lectures 2 and 3). To sum up, we used the following assumptions to derive this
likelihood:

1. Independence of (x1, y1), . . . , (xn, yn)

2. The model equation (3)

3. Independence of εi and xi

4. εi ∼ N(0, σ2)

5. The density of xi does not depend on θ = (β0, β1, σ).

2.2 Back to AR(1)

Let us now get back to the AR(1) model (2). Superficially, (2) looks the same as (3) with
i = t, xi = yt−1 and β0 = φ0 and β1 = φ1. However, some of the other regression assumptions
listed above do not hold for (2):

1. Independence of (xi, yi) across i no longer holds. This is because (xt, yt) = (yt−1, yt)
so one observation is shared between (xt, yt) for successive values of t.

2. The density of xt = yt−1 will depend on θ (because yt−1 = φ0 +φ1yt−2 + εt−1 so φ0, φ1
and σ certainly affect yt−1).

As a result, we cannot use the same principles as in usual linear regression to write the
likelihood for AR models. Instead we shall proceed as follows. As the data is y1, . . . , yn, the
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likelihood is given by (below θ = (φ0, φ1, σ) denotes the set of parameters)

Likelihood for Model (2)

= fy1,...,yn|θ(y1, . . . , yn)

= fy1|θ(y1)fy2|y1,θ(y2)fy3|y1,y2,θ(y3) . . . fyn|y1,...,yn−1,θ(yn)

= fy1|θ(y1)
n∏
t=2

fyt|y1,...,yt−1,θ(yt)

= fy1|θ(y1)

n∏
t=2

fφ0+φ1yt−1+εt|y1,...,yt−1,θ(yt)

= fy1|θ(y1)
n∏
t=2

fεt|y1,...,yt−1,θ(yt − φ0 − φ1yt−1).

Now we assume that εt is independent of y1, . . . yt−1. This gives

Likelihood for Model (2)

= fy1|θ(y1)

n∏
t=2

fεt|y1,...,yt−1,θ(yt − φ0 − φ1yt−1) = fy1|θ(y1)
n∏
t=2

fεt(yt − φ0 − φ1yt−1).

With εt ∼ N(0, σ2), we get

Likelihood for Model (2) = fy1|θ(y1)

n∏
t=2

1√
2πσ

exp

(
− 1

2σ2
(yt − φ0 − φ1yt−1)2

)
which is equivalent to:

Likelihood for (2) = fy1|θ(y1)

(
1√
2πσ

)n−1
exp

(
− 1

2σ2

n∑
t=2

(yt − φ0 − φ1yt−1)2
)
. (4)

To sum up, we used the following assumptions to derive the likelihood (4):

1. The model equation (2).

2. Independence of εt and y1, . . . , yt−1 for each t = 2, . . . , n− 1.

3. εt ∼ N(0, σ2).

The likelihood (4) has the term fy1|θ(y1) which we should make explicit before we can com-
pute estimators. Note that the model equation (2) is only for t = 2, . . . , n which means that
y1 never appears on the left side. So it is not possible to compute fy1|θ(y1) using (2). There
are two approaches of dealing with fy1|θ(y1).

1. Approach One: Here one simply assumes that fy1|θ(y1) does not depend on θ. Then
fy1|θ(y1) becomes a constant factor in (4) that can be ignored in proportionality leading
to

Likelihood for (2) ∝
(

1√
2πσ

)n−1
exp

(
− 1

2σ2

n∑
t=2

(yt − φ0 − φ1yt−1)2
)
. (5)

It is easy to verify that maximizing the above likelihood leads to estimates φ̂0, φ̂1 that
are identical to those obtained by regression Y on X as described in Section 1. The
right hand side of (5) is actually equal to the conditional density of y2, . . . , yn given y1, θ
(under the aforementioned assumptions: model (2), εt ∼ N(0, σ2) and independence
of εt and y1, . . . , yt−1). For this reason, (5) is called “Conditional Likelihood” and the
resulting maximizers “Conditional MLEs” or “Conditional Least Squares Estimators”.
“Conditional” here refers to conditional on y1.
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2. Approach Two: Here one extends the model equation (2) to t = 1, 0,−1,−2, . . . .
This allows possible computation of fy1|θ(y1) in the following way. Applying (2) for
t = 1, 0,−1,−2, . . . recursively, we get

y1 = φ0 + φ1y0 + ε1

= φ0 + φ1 (φ0 + φ1y−1 + ε0) + ε1

= φ0(1 + φ1) + φ21y−1 + φ1ε0 + ε1

= φ0(1 + φ1) + φ21 (φ0 + φ1y−2 + ε−1) + φ1ε0 + ε1

= φ0
(
1 + φ1 + φ21

)
+ φ31y−2 + φ21ε−1 + φε0 + ε1.

Continuing this way with using (2) for t = −2,−3, . . . ,−M (for some large M), we get

y1 = φ0
(
1 + φ1 + φ21 + · · ·+ φM1

)
+ φM+1

1 y−M + φM1 ε−M+1 + φM−11 ε−M+2 + · · ·+ φε0 + ε1

= φ0

M∑
j=0

φj1 + φM+1
1 y−M +

M∑
j=0

φj1ε1−j .

This equation is not enough to allow us to deduce fy1|θ(y1) because it involves the

unknown quantity y−M . If |φ1| < 1, then the coefficient φM+1
1 in front of y−M is very

small. In this case, it might make sense to ignore the term φM+1
1 y−M when M is large.

This allows us to write

y1 ≈ φ0
M∑
j=0

φj1 +
M∑
j=0

φj1ε1−j ≈ φ0
∞∑
j=0

φj1 +
∞∑
j=0

φj1ε1−j =
φ0

1− φ1
+
∞∑
j=0

φj1ε1−j .

The term
∑∞

j=0 φ
j
1ε1−j is the sum of independent normal random variables, so it is

Normal with mean zero (as each ε1−j has mean zero) and with variance:

var

 ∞∑
j=0

φj1ε1−j

 =
∞∑
j=0

var
(
φj1ε1−j

)
=
∞∑
j=0

φ2j1 var(ε1−j) = σ2
∞∑
j=0

φ2j1 =
σ2

1− φ21
.

Thus when |φ1| < 1, we can write

y1 ∼ N
(

φ0
1− φ1

,
σ2

1− φ21

)
.

which gives

fy1|θ(y1) =

√
1− φ21√
2πσ

exp

(
−1− φ21

2σ2

(
y1 −

φ0
1− φ1

)2
)
.

Plugging this in (4), we get

Likelihood for (2)

=

√
1− φ21√
2πσ

exp

(
−1− φ21

2σ2

(
y1 −

φ0
1− φ1

)2
)(

1√
2πσ

)n−1
exp

(
− 1

2σ2

n∑
t=2

(yt − φ0 − φ1yt−1)2
)
.

(6)

This is a more complicated likelihood compared to (5). This is applicable only when
|φ1| < 1. We shall see later the implications of this assumption. (6) is referred to as
the full likelihood for AR(1), and the estimates obtained by maximization of (6) as full
MLEs (as opposed to conditional MLEs obtained by maximizing (5)). In cases where
the assumption |φ1| < 1 is reasonable, full MLEs will be different from conditional
MLEs although when n is large, they will generally be quite close to each other.
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2.3 AR(p)

The AR(p) model is given by:

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + εt (7)

We can write the likelihood as

fy1,...,yn|θ(y1, . . . , yn) = fyp+1,...,yn|y1,...,yp,θ(yp+1, . . . , yn)fy1,...,yp|θ(y1, . . . , yp).

The conditional likelihood is calculated as

fyp+1,...,yn|y1,...,yp,θ(yp+1, . . . , yn)

=

n∏
t=p+1

fyt|yt−1,...,y1(yt)

=

n∏
t=p+1

fφ0+φ1yt−1+···+φpyt−p+εt|yt−1,...,y1(yt)

=
n∏

t=p+1

fεt|yt−1,...,y1(yt − φ0 − φ1yt−1 − · · · − φpyt−p).

In order to proceed further, we shall make the following assumption:

εt | yt−1, . . . , y1 ∼ N(0, σ2) for each t = p+ 1, . . . , n. (8)

This is equivalent to assuming that εt ∼ N(0, σ2) and that εt is independent of y1, . . . , yt−1.
With (8), we get

fyp+1,...,yn|y1,...,yp,θ(yp+1, . . . , yn)

=

n∏
t=p+1

1√
2πσ

exp

(
−(yt − φ0 − φ1yt−1 − · · · − φpyt−p)2

2σ2

)

=

(
1√
2πσ

)n−p
exp

− 1

2σ2

n∑
t=p+1

(yt − φ0 − φ1yt−1 − · · · − φpyt−p)2
 .

Observe that, in order to write the above formula, we only used the model equation (7) for
t = p+ 1, . . . , n.

To obtain the parameter estimates, we can directly maximize this conditional likelihood.
The resulting estimates, which are identical to the OLS method described in Section 1, are
known as Conditional MLEs or Conditional Least Squares Estimates.

The full likelihood is

fy1,...,yn|θ(y1, . . . , yn)

= fyp+1,...,yn|y1,...,yp,θ(yp+1, . . . , yn)fy1,...,yp|θ(y1, . . . , yp)

=

(
1√
2πσ

)n−p
exp

− 1

2σ2

n∑
t=p+1

(yt − φ0 − φ1yt−1 − · · · − φpyt−p)2
 fy1,...,yp|θ(y1, . . . , yp).

If we assume that fy1,...,yp|θ(y1, . . . , yp) does not depend on θ, then maximizing the full
likelihood is equivalent to maximizing the conditional likelihood. If we want to derive
fy1,dots,yp|θ(y1, . . . , yp) in a more principled way, then we have to use the model equation
(7) for smaller values of t (i.e., t = p, p− 1, p− 2, . . . , 0,−1, . . . ). We shall see later how this
is done (this will also require some assumptions similar to |φ1| < 1 for p = 1).
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3 Predictions and Difference Equations

Given a fitted AR(p) model with parameter estimates φ̂0, . . . , φ̂p, predictions ŷn+i for i =
1, 2, . . . are obtained by the recursion:

ŷn+i = φ̂0 + φ̂1ŷn+i−1 + · · ·+ φ̂pŷn+i−p for i = 1, 2, . . . (9)

where the recursion is initialized with

ŷj = yj for j = n, n− 1, . . . , n+ 1− p. (10)

The behavior of the predictions (9) given by the AR(p) model can be understood by looking
at difference equations. A difference equation is of the form:

uk = α0 + α1uk−1 + · · ·+ αpuk−p for k = p, p+ 1, p+ 2, . . . . (11)

This is initialized by specifying the values of u0, u1, . . . , up−1. Clearly the prediction recursion
(9) of the AR(p) model along with the initial condition (10) is similar to (11) (basically take
uj = Ŷn+1−p+j). (11) is called a difference equation of order p. In order to understand its
solutions, let us start with the case p = 1.

3.1 First Order (p = 1)

Here p = 1 so the difference equation becomes:

uk = α0 + α1uk−1 for k = 1, 2, . . .

along with an initial value specification for u0. We first convert this equation into a ho-
mogeneous difference equation (a homogeneous equation is one with no intercept term) by
taking

vk = uk −
α0

1− α1

so that

vk = uk −
α0

1− α1
= α0 + α1uk−1 −

α0

1− α1
= α0 + α1

(
vk−1 +

α0

1− α1

)
− α0

1− α1
= α1vk−1.

Thus vk satisfies the homogenous equation:

vk = α1vk−1.

It is now easy to see that the solution is given by

vk = αk1v0 for k = 0, 1, 2, . . . .

The solution for uk is thus given by

uk =
α0

1− α1
+ αk1

(
u0 −

α0

1− α1

)
=
(

1− αk1
) α0

1− α1
+ αk1u0

=
(

1 + α1 + α2
1 + · · ·+ αk−11

)
α0 + αk1u0 for k = 0, 1, 2, . . . .

The last expression above also makes sense when α1 = 1 (note that, when α1 = 1, some of
the previous expressions do not make sense because 1 − α1 appearing in the denominator).
The behavior of uk will then be of three kinds depending on the precise value of α1:
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1. |α1| < 1: Here uk converges exponentially to α0/(1− α1).

2. |α1| > 1: Here, when k gets large, uk is essentially equal to αk1u0 which is exploding to
infinity exponentially in magnitude.

3. α1 = 1: Here uk = kα0 + u0 which is linear

4. α1 = −1: Here uk oscillates between the two values u0 and α0 − u0.

We shall see formulae for solutions of the difference equation for p ≥ 2 in the next lecture.

3.2 Recommended Reading for Today

1. For more on fitting AR(p) models to data, see Section 3.5 of the book by Shumway
and Stoffer titled Time Series Analysis and its applications (Fourth Edition).

2. For more on difference equations, see Section 3.2 of the Shumway-Stoffer book.
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