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1 Recap from last lecture

In the last couple of lectures, we considered fitting the sinusoidal model

yt = β0 + β1 cos(2πft) + β2 sin(2πft) + εt with εt
i.i.d∼ N(0, σ2) (1)

to observed time series y1, . . . , yn. A key role for inferring the frequency parameter f in this
model is played by:

RSS(f) := min
β0,β1,β2

n∑
t=1

(yt − β0 − β1 cos(2πft)− β2 sin(2πft))2 = ‖y −Xf β̂f‖2

where

y =


y1
·
·
·
yn

 and Xf =


1 cos(2πf(1)) sin(2πf(1))
· · ·
· · ·
· · ·
1 cos(2πf(n)) sin(2πf(n))

 and β̂f = (XT
f Xf )−1XT

f y.

RSS(f) is simply the residual sum of squares in the linear regression model obtained by
fixing the frequency parameter f . It describes how well the sinusoid with frequency f fits
the observed data y1, . . . , yn.

In the last lecture, we derived the following alternative formula for RSS(f) that holds
when f ∈ (0, 0.5) is a Fourier frequency i.e., nf is an integer:

RSS(f) =
∑
t

(yt − ȳ)2 − 2I(f) when f ∈ (0, 0.5) is a Fourier Frequency (2)

where I(f) is defined by

I(f) :=
1

n

(
n∑
t=1

yt cos(2πft)

)2

+
1

n

(
n∑
t=1

yt sin(2πft)

)2

for f ∈ (0, 0.5)

I(f) is known as the Periodogram of the data y1, . . . , yn.

In this lecture, we study the Discrete Fourier Transform (DFT) of the observed time series
data, and see how the DFT is related to the periodogram.
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2 Orthogonality Properties of discretely-sampled Sinusoids at
Fourier Frequencies

The key fact underlying the Discrete Fourier Transform (DFT) is orthogonality of (discretely
sampled) sinusoids at Fourier frequencies. Last lecture, we proved the following formulae. If
f is a Fourier frequency with 0 < f < 0.5, then

n∑
t=1

cos(2πft) = 0
n∑
t=1

sin(2πft) = 0

n∑
t=1

cos2(2πft) =
n

2

n∑
t=1

sin2(2πft) =
n

2

n∑
t=1

cos(2πft) sin(2πft) = 0

The sums above are over t = 1, . . . , n. It should be clear that the same formulae are true if
we sum over t = 0, 1, . . . , n − 1 (because the value of cos(2πft) and sin(2πft) at t = 0 and
t = n coincide when f is a Fourier frequency). When discussing the DFT, it is a standard
convention to take t = 0, 1, . . . , n− 1, and this is what we shall be doing in the this lecture.
Rewriting the above formulae with t = 0, 1, . . . , n− 1, we get

n−1∑
t=0

cos(2πft) = 0
n−1∑
t=0

sin(2πft) = 0 (3)

n−1∑
t=0

cos2(2πft) =
n

2

n−1∑
t=0

sin2(2πft) =
n

2
(4)

n−1∑
t=0

cos(2πft) sin(2πft) = 0 (5)

when f ∈ (0, 0.5) is a Fourier frequency. The conditions (3) say that discretely sampled
sinusoids at Fourier frequencies f ∈ (0, 0.5) have mean zero. Conditions (4) say that they
have energy equal to n/2. Condition (7) says that the discretely sampled cosine and sine are
orthogonal, or equivalently, that their correlation is zero.

There is another very important property. If f1 and f2 are two distinct Fourier frequencies
in (0, 0.5), then

n−1∑
t=0

cos(2πf1t) cos(2πf2t) = 0
n−1∑
t=0

cos(2πf1t) sin(2πf2t) = 0

n−1∑
t=0

cos(2πf1t) sin(2πf2t) = 0
n−1∑
t=0

cos(2πf1t) sin(2πf2t) = 0

(6)

This means that the sampled sinusoids at distinct Fourier frequencies are orthogonal (or
equivalently uncorrelated).

These properties allow us to construct an orthogonal basis for Rn consisting of sinusoids.
Define

cj := (1, cos(2πj/n), cos(2π2j/n), . . . , cos(2π(n− 1)j/n))T

and

sj := (0, sin(2πj/n), sin(2π2j/n), . . . , sin(2π(n− 1)j/n))T .
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These are the vectors obtained by evaulating cos(2πft) and sin(2πft) with Fourier Frequency
f = j/n at time points t = 0, 1, . . . , (n−1). So far we have assumed that 0 < f = j/n < 1/2
i.e., 0 < j < n/2. When j = 0, the vector c0 is the vector of all ones, while s0 equals the zero
vector. When f = 1/2 (this is only when n is even other 1/2 will not be a Fourier frequency)
or j = n/2, we have

cn/2 = (1,−1, 1,−1, . . . , (−1)n−1) and sn/2 = (0, . . . , 0).

Thus when n is even, we are looking at the vectors:

c0, c1, s1, . . . , c
n
2
−1, s

n
2
−1, c

n
2 .

When n is odd, we are looking at

c0, c1, s1, . . . , c
n−1
2 , s

n−1
2 .

In either case, the total number of these vectors equals n. By the properties stated above,
these vectors are orthogonal, and hence form a basis for the n-dimensional vector space of
real-valued vectors Rn. This means that every vector y ∈ Rn can be written as a linear
combination of these basis vectors. The coefficients in this linear combination are closely
related to the DFT. This is the idea behind the DFT. For the formal definition, we use
complex exponentials as opposed to sines and cosines.

3 Complex Sinusoidal Vectors at Fourier Frequencies

3.1 f ∈ [0, 1) as opposed to f ∈ [0, 0.5]

cos(2πft) and sin(2πft) can be represented in terms of complex exponentials as

cos(2πft) =
1

2
exp(2πift)+

1

2
exp(−2πift) and sin(2πft) =

1

2i
exp(2πift)− 1

2i
exp(−2πift)

Note here that we have to deal with −f as well (because of the second term e−2πift =
e2πi(−f)t) and −f lies between −1/2 and 0. Thus when discussing sinusoids in terms of
complex exponentials e2πift, t = 0, 1, . . . , n− 1, we take f ∈ (−0.5, 0.5] (note that f = −0.5
leads to the same e2πift as f = 0.5 so we drop f = −0.5 from consideration). If one does not
want to deal with negative frequencies, then we can use

e−2πift = cos(2πft)− i sin(2πft) = cos(2π(1− f)t) + i sin(2π(1− f)t) = e2πi(1−f)t

because cos(2π(1− f)t) = cos(2πt− 2πft) = cos(2πft) (note t is an integer) and sin(2π(1−
f)t) = sin(2πt− 2πft) = − sin(2πft).

Therefore, if we want to use complex exponentials e2πift but we do not want to deal with
negative frequencies, then we can restrict f to [0, 1). From here on, whenever we consider
the complex sinusoid xt = e2πift for t = 0, 1, . . . , n− 1, we restrict f ∈ [0, 1).

3.2 Complex Sinusoids

For every 0 ≤ j ≤ (n− 1), let us define the n× 1 vector

uj = (1, exp(2πij/n), exp(2πi2j/n), . . . , exp(2πi(n− 1)j/n))T .

This vector can be interpreted as the complex sinusoid e2πift with Fourier frequency f = j/n
evaluated at the time points t = 0, 1, . . . , (n− 1). It is easy to see that
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1. When j = 0, we have u0 = (1, 1, . . . , 1).

2. When 1 ≤ j ≤ n − 1, we have uj = un−j . Here ū denotes complex conjugate of u
(the complex conjugate ū of a vector u is defined as the vector obtained by taking the
complex conjugates of each entry of u).

The most important property of these complex valued vectors u0, u1, . . . , un−1 is orthog-
onality. Specifically, for 0 ≤ j 6= k ≤ n− 1, we have〈

uj , uk
〉

= 0. (7)

Recall that the inner product between two complex valued vectors a = (a1, . . . , an)T and
b = (b1, . . . , bn)T is given by

〈a, b〉 =
n∑
j=1

aj b̄j .

Note specially the complex conjugate of bj above.

Here is the proof of (7). Fix 0 ≤ j 6= k ≤ n− 1 and write

〈
uj , uk

〉
=

n−1∑
t=0

exp

(
2πi

j

n
t

)
exp

(
2πi

k

n
t

)

=

n−1∑
t=0

exp

(
2πi

j

n
t

)
exp

(
−2πi

k

n
t

)

=

n−1∑
t=0

exp

(
2πi

j − k
n

t

)

=
n−1∑
t=0

[
exp

(
2πi

j − k
n

)]t

=
1−

(
exp

(
2πi j−kn

))n
1− exp

(
2πi j−kn

)
=

1− exp (2πi(j − k))

1− exp
(

2πi j−kn

)
=

1− cos (2π(j − k))− i sin (2π(j − k))

1− exp
(

2πi j−kn

) =
1− 1− 0

1− exp
(

2πi j−kn

) = 0

This proves (7). It is also easy to see that (just take j = k in the above calculation and the
answer can be found in the third line)〈

uj , uj
〉

= ‖uj‖2 = n.

Therefore the n complex-valued vectors u0, u1, . . . , un−1 are orthogonal and they all have
the same squared length equal to n. This immediately implies that they form a basis for
the space Cn consisting of all complex-valued vectors of length n. In other words, every
complex-valued vector of length n can be written as a linear combination of u0, u1, . . . , un.
This observation is the foundation for the definition of the Discrete Fourier Transform.
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3.3 The Discrete Fourier Transform (DFT)

Because u0, . . . , un−1 form a basis, we can write any n× 1 vector of complex entries:

y = (y0, . . . , yn−1)
T

as a linear combination of u0, . . . , un−1. More specifically, we can write

y = a0u
0 + a1u

1 + · · ·+ an−1u
n−1 (8)

Take the inner product of both sides of the above equation with uj for a fixed j and use
orthogonality so that

〈
uj .uk

〉
= 0 for k 6= j and the fact that

〈
uj , uj

〉
= n to obtain

aj =
1

n

〈
y, uj

〉
=

1

n

n−1∑
t=0

yt exp

(
−2πijt

n

)
. (9)

We are now ready to define the Discrete Fourier Transform (DFT). The DFT of y0, y1, . . . , yn−1

is defined by

bj :=
〈
y, uj

〉
=

n−1∑
t=0

yt exp

(
−2πijt

n

)
. (10)

More specifically, the n (possibly) complex numbers b0, b1, . . . , bn−1 are collectively called
the DFT of y0, . . . , yn−1. Typically, y0, . . . , yn−1 will represent observed time series data. It
is important to note that even though y0, . . . , yn−1 are real-valued, their DFT b0, . . . , bn−1

can be complex-valued.

Here are some basic things to note about the DFT:

1. b0 is always equal to y0 + · · ·+ yn−1. To see this, just plug in j = 0 in (10).

2. In general bj is a complex number with real and imaginary parts given by:

real part of bj =

n−1∑
t=0

yt cos

(
2πjt

n

)
and imaginary part of bj = −

n−1∑
t=0

yt sin

(
2πjt

n

)

3. The DFT of y = (y0, . . . , yn−1)
T can be obtained in numpy using the command np.fft.fft(x).

Here fft stands for Fast Fourier Transform which is a special efficient algorithm for
computing the DFT (we will not be going over the details of the FFT algorithm).

3.4 The Periodogram

The Periodogram is a way of visualizing the DFT. The DFT consists of complex numbers
so it is difficult to visualize it directly. The common visualization consists of looking at the
squared absolute values of the DFT. More precisely, the periodogram is defined by

I

(
j

n

)
:=
|bj |2

n
for 0 <

j

n
≤ 1

2
.

One visualizes the size of the DFT terms by plotting the periodogram. Note that j = 0 is
not plotted as b0 is simply the sum of the data values and does not provide any information
on the sinusoidal components present in the data.
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Because

bj =
n−1∑
t=0

yt exp

(
−2πijt

n

)
=

n−1∑
t=0

yt cos
2πjt

n
− i

n−1∑
t=0

yt sin
2πjt

n
,

we can write the periodogram as:

I

(
j

n

)
=

1

n

(n−1∑
t=0

yt cos
2πjt

n

)2

+

(
n−1∑
t=0

yt sin
2πjt

n

)2
 for 0 <

j

n
≤ 1

2
. (11)
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