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1 Point Predictions from AR(p) models

If the parameters φ0, . . . , φp and σ (collectively denoted by θ) of the AR(p) model are fixed,
then the prediction for a future value yn+i is given by

ŷn+i(θ) := E (yn+i | y1, . . . , yn, θ)

These values are calculated recursively for i = 1, 2, . . . using the following recursion:

ŷn+i(θ) = φ0 + φ1ŷn+i−1(θ) + φ2ŷn+i−2(θ) + · · ·+ φpŷn+i−p(θ) for i = 1, 2, . . . . (1)

which is initialized by

ŷj(θ) = yj for j = n, n− 1, . . . , n+ 1− p, (2)

Since θ is unknown, we can replace it by the conditional MLE θ̂. Alternatively, one can try
to compute:

E(yn+i | y1, . . . , yn) =

∫
ŷn+i(θ)fθ|y1,...,yn(θ)dθ (3)

numerically using posterior samples of θ. This method is complicated and the common
procedure is simply to replace θ by the conditional MLE θ̂.

2 Prediction Standard Errors

To compute prediction standard errors, we can again fix the parameter values θ, and then
attempt to calculate:

Vi(θ) := var (yn+i | y1, . . . , yn, θ) for i = 1, 2, . . . .

The prediction standard error corresponding to the predicted value for yn+i can then be

taken to be

√
Vi(θ̂) (note that θ is replaced by the conditional MLE θ̂).

It turns out that it is difficult to directly setup a recursion for Vi(θ). Instead, we will
get the recursion by working with the conditional covariance matrices of yn+1, . . . , yn+k
(given θ and the data) for k = 1, 2, . . . .

Below we review some basic facts about covariance matrices.
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2.1 Covariance Matrices

A finite number of random variables can be viewed together as a random vector. More pre-
cisely, a random vector is a vector whose entries are random variables. Let Y = (Y1, . . . , Yn)T

be an n× 1 random vector. Its Expectation EY is defined as a vector whose ith entry is the
expectation of Yi i.e., EY = (EY1,EY2, . . . ,EYn)T . The covariance matrix of Y , denoted by
Cov(Y ), is an n × n matrix whose (i, j)th entry is the covariance between Yi and Yj . Two
important but easy facts about Cov(Y ) are:

1. The diagonal entries of Cov(Y ) are the variances of Y1, . . . , Yn. More specifically the
(i, i)th entry of the matrix Cov(Y ) equals var(Yi).

2. Cov(Y ) is a symmetric matrix i.e., the (i, j)th entry of Cov(Y ) equals the (j, i) entry.
This follows because Cov(Yi, Yj) = Cov(Yj , Yi).

The following formulae are very important:

1. E(AY +c) = AE(Y )+c for every deterministic matrix A and every deterministic vector
c.

2. Cov(AY + c) = ACov(Y )AT for every deterministic matrix A and every deterministic
vector c.

As a consequence of the second formula above, we get

var(aTY ) = aTCov(Y )a =
∑
i,j

aiajCov(Yi, Yj) for every p× 1 vector a.

Given two random vectors Y (p× 1) and W (q × 1), we use Cov(Y,W ) to denote the p× q
matrix whose (i, j)th entry equals the covariance Cov(Yi,Wj) between Yi and Wj . With this
definition, the previous notion of Cov(Y ) equals simply Cov(Y, Y ). It can be checked that

Cov(AY + c,BW + d) = ACov(Y,W )BT .

2.2 Covariance Recursion in AR(p)

We shall set up a recursion for the covariance matrices:

Γk(θ) := Cov



yn+1

·
·
·

yn+k

 | θ, y1, . . . , yn


The (i, j)th entry of Γk(θ) is

Cov (yn+i, yn+j | y1, . . . , yn, θ) .

The diagonal entries of Γk(θ) equal V1(θ), . . . , Vk(θ).

To initialize the recursion for Γk(θ), note that

Γ1(θ) = var (yn+1 | y1, . . . , yn, θ)
= var (φ0 + φ1yn + . . . φpyn+1−p + εn+1 | y1, . . . , yn, θ)
= var (εn+1 | y1, . . . , yn, θ) = σ2
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We now relate Γk+1(θ) to Γk(θ) to establish the recursion. We can write

Γk(θ) =

(
Γk−1(θ) γk1(θ)
γTk1(θ) Vk(θ)

)
where

γk1(θ) := Cov




yn+1

·
·
·

yn+k−1

 , yn+k | θ, y1, . . . , yn


and, as before,

Vk(θ) = var (yn+k | θ, y1, . . . , yn) .

We compute γ̂k1 as

γk1(θ) := Cov




yn+1

·
·
·

yn+k−1

 , yn+k | θ, y1, . . . , yn



= Cov




yn+1

·
·
·

yn+k−1

 , φ0 + φ1yn+k−1 + φ2yn+k−2 + · · ·+ φpyn+k−p + εn+k | θ,data



= Cov




yn+1

·
·
·

yn+k−1

 , φ1yn+k−1 + φ2yn+k−2 + · · ·+ φpyn+k−p | θ,data



= Cov




yn+1

·
·
·

yn+k−1

 ,
k−1∑
i=1

aiyn+i | θ,data



where, for i = 1, . . . , k − 1,

ai =

{
φk−i provided k − p ≤ i ≤ k − 1

0 otherwise

Thus if a is the (k − 1)× 1 vector with entries a1, . . . , ak−1, we have

γk1(θ) = Cov




yn+1

·
·
·

yn+k−1

 , aT


yn+1

·
·
·

yn+k−1

 | θ,data

 = Γk−1(θ)a.
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Further

Vk(θ) = var (yn+k | θ,data)

= var (φ0 + φ1yn+k−1 + φ2yn+k−2 + · · ·+ φpyn+k−p + εn+k | θ,data)

= var (φ0 + φ1yn+k−1 + φ2yn+k−2 + · · ·+ φpyn+k−p | θ,data) + σ2

= var

(
k−1∑
i=1

aiyn+i | θ,data

)
+ σ2 = aTΓk−1(θ)a+ σ2.

The equation for obtaining Γk(θ) from Γk−1(θ) is therefore

Γk(θ) =

(
Γk−1(θ) γk1(θ)
γTk1(θ) Vk(θ)

)
=

(
Γk−1(θ) Γk−1(θ)a
aTΓk−1(θ) aTΓk−1(θ)a+ σ2

)
The algorithm for calculating the variances Vi(θ) for i = 1, 2, . . . ,K is thus given by

1. Initialize with Γ1(θ) = V1(θ) = σ2.

2. For k = 2, 3, . . . ,K, repeat the following

a) Form the (k − 1) × 1 vector a whose ith entry is φk−i if k − p ≤ i ≤ k − 1 and 0
otherwise.

b) Calculate Γk(θ) using Γk−1(θ) and a by the formula given above.

3. The variances Vi(θ), i = 1, 2, . . . ,K are given by the diagonal entries of the matrix
ΓK(θ).

Because θ is unknown, in practice, we run this recursion with θ replaced by its conditional
MLE θ̂. The prediction standard errors are then the square roots of Vi(θ̂).

3 Time Series Models

Before proceeding further, let us take a general look at time series models (especially the
models that we have already considered), and introduce the concept of “Stationarity”. Sta-
tionarity is an important property that some time series models satisfy while others do not.

We have already seen many models for observed time series data y1, . . . , yn. These models
describe the distribution of y1, . . . , yn in terms of various parameters. Even though, the
observed data only corresponds to times t = 1, . . . , n, it makes sense for the model to
describe the distribution of yt for all t past and present i.e., t = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . .
This is because one may be interested in predicting the values of yt for unobserved times.

All of our models have error terms εt that we assume are i.i.d Gaussian N(0, σ2). This
ensures that the whole time series {yt} is jointly Gaussian. Gaussianity ensures that the
behavior of the time series model is characterized by means (expectations) and covariances.

Example 3.1. yt = β0 + β1t+ εt. The means are given by:

Eyt = β0 + β1t

and covariances are:

var(yt) = σ2 and cov(yt1 , yt2) = 0 for t1 6= t2.

So the mean changes with t, variance is constant and there is no correlation between different
time points.
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Example 3.2. yt = β0 + β1 cos(2πft) + β2 sin(2πft) + εt The means are given by:

Eyt = β0 + β1 cos(2πft) + β2 sin(2πft)

and covariances are:

var(yt) = σ2 and cov(yt1 , yt2) = 0 for t1 6= t2.

Again the mean changes with t, variance is constant and there is no correlation between
different time points.

Example 3.3. Consider the Spectrum model:

yt = β0 +
m∑
j=1

(
β1j cos

2πjt

n
+ β2j sin

2πjt

n

)
with β11, β21, β12, β22, . . . , β1m, β2m all independent with

β1j , β2j
i.i.d∼ N(0, τ2j ).

For this model, Eyt = β0 so that the mean is constant over time (unlike the previous two
models). The covariance is given by

cov(yt1 , yt2)

= cov

β0 +
m∑
j=1

(
β1j cos

2πjt1
n

+ β2j sin
2πjt1
n

)
, β0 +

m∑
j=1

(
β1j cos

2πjt2
n

+ β2j sin
2πjt2
n

)
=

m∑
j=1

{
cov

(
β1j cos

2πjt1
n

, β1j cos
2πjt2
n

)
+ cov

(
β2j sin

2πjt1
n

, β2j sin
2πjt2
n

)}

=
m∑
j=1

{
τ2j cos

2πjt1
n

cos
2πjt2
n

+ τ2j sin
2πjt1
n

sin
2πjt2
n

}

=
m∑
j=1

τ2j cos
2πj(t1 − t2)

n
=

m∑
j=1

τ2j cos
2πj|t1 − t2|

n

This model incorporates dependence between yt at different time points t (unlike the previous
two models). Further, the covariance between yt1 and yt2 only depends on the distance |t1−t2|
between the two time points.

4 Stationarity

Definition 4.1 (Stationarity). A doubly infinite sequence of random variables yt is station-
ary

1. The mean of yt (denoted by Eyt) is the same for all times t

2. The covariance between yt1 and yt2 only depends on the distance |t1 − t2| between t1
and t2.

The third example of the previous section is a stationary model while the other two models
are not stationary because the means therein change with time. We shall see more examples
of stationary models next week.
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4.1 Additional Optional Reading

1. For more on predictions, see Section 3.4 of Shumway-Stoffer 4th edition.

2. For more on stationarity, see Chapter 1 of Shumway-Stoffer 4th edition.
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