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1 Change of Slope Model

While our focus, in the last few lectures, has been on sinusoidal models, the methodology
can be applied in the same way to some other nonlinear regression models. As an illustra-
tive example, we study the change of slope model today. Other examples can be found in
Homework Two. The change of slope model is given by:

yt = β0 + β1t+ β2ReLU(t− c) + εt (1)

with εt
i.i.d∼ N(0, σ2). Here ReLU(t− c) = (t− c)+ equals 0 if t ≤ c and equals t− c if t ≥ c.

We can also write

ReLU(t− c) = (t− c)+ = (t− c)I{t > c} = max(t− c, 0).

(·)+ is also called the positive part function, or, the ramp function.

The model (1) says that for times t ≤ c, the slope of the regression line is β1, while for
t > c, the slope changes to (β1 + β2). An alternative name for this model is “Broken-stick
regression”. This is because the function

t 7→ β0 + β1t+ β2ReLU(t− c)

resembles a broken stick.

The unknown parameters for this model are c, β0, β1, β2 as well as σ. The unknown
parameter c makes (1) a nonlinear regression model. If c were known, then (1) would be a
linear regression model:

y = Xcβ + ε (2)

with

Xc =



1 1 ReLU(1− c)
1 2 ReLU(2− c)
1 3 ReLU(3− c)
· · ·
· · ·
· · ·
1 n ReLU(n− c)


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2 Estimation of c, β0, β1, β2, σ

Parameter estimation can be done via Maximum Likelihood Estimation. Just as in the case
of the sinusoidal model, a crucial role is played by the residual sum of squares in the linear
regression model (2):

RSS(c) = min
β0,β1,β2

n∑
t=1

(yt − β0 − β1t− β2ReLU(t− c))2 .

The MLE of c is given by the minimizer of RSS(c) over c. On the computer, we calculate
this by enumerating all the possible values of c (these are just 1, 2, . . . , n) and then using a
function such as np.argmin.

After the MLE ĉ of c is obtained, β0, β1, β2 are estimated as in linear regression (e.g., using
sm.OLS). Specifically,

β̂ = (β̂0, β̂1, β̂2)
T = (XT

ĉ Xĉ)
−1XT

ĉ y. (3)

Then σ is estimated as in linear regression:

σ̂ =

√
RSS(ĉ)

n− 3
.

3 Uncertainty Quantification for c, β0, β1, β2, σ

For this, we use Bayesian analysis. Our prior for β0, β1, β2, σ is the same as the one used for
linear regression:

β0, β1, β2, log σ
i.i.d∼ unif(−C,C)

for a large C.

For the parameter c, we also use a uniform prior. The range of values of c is 1, 2, . . . , n.
But actually there is no reason to allow c = 1 and c = n as explained below.

When c = 1, the variable ReLU(t− c) simply becomes t− c = t− 1 so that the nonlinear
term ReLU(t− c) can be absorbed with the other terms as:

β0 + β1t+ β2ReLU(t− 1) = β0 + β1t+ β2(t− 1) = (β0 − β2) + (β1 + β2)t.

In other words, when c = 1, the model reverts to the simple linear trend model (it is no
longer a broken stick regression model). On the other hand, when c = n, we simply have
ReLU(t− c) = 0 (because t = 1, . . . , n is always smaller than n) so the term ReLU(t− c) has
no effect when c = n.

Our range of values is therefore c = 2, . . . , n. The prior for c will be taken to be

c ∼ uniform{2, . . . , n− 1}.

With these priors, calculate the posterior distributions, exactly as in the case of the sinusoidal
model. This leads to the following. The posterior distribution of c is:

π(c | data) ∝
(

1

RSS(c)

)(n−3)/2

|XT
c Xc|−1/2I{c = 2, . . . , n− 1}.
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In other words, this is a discrete distribution with pmf:

π(c | data) =

(
1

RSS(c)

)(n−3)/2
|XT

c Xc|−1/2

∑n−1
c=2

(
1

RSS(c)

)(n−3)/2
|XT

c Xc|−1/2

for c = 2, . . . , n− 1.

The denominator above is simply the sum of the numerator values for all c = 2, . . . , n − 1.
In particular, the denominator does not depend on the particular value of c anymore and is
a constant. We can also write:

π(c | data) =

(
1

RSS(c)

)(n−3)/2
|XT

c Xc|−1/2(
1

RSS(2)

)(n−3)/2
|XT

2 X2|−1/2 + · · ·+
(

1
RSS(n−1)

)(n−3)/2
|XT

n−1Xn−1|−1/2

for c = 2, . . . , n− 1.

Given c, as remarked before, the model is just a linear regression model with X-matrix
given by Xc. Therefore, by results from linear regression (see Problem 4 in Homework 1),
the posterior density of σ given the data as well as c is characterized by:

RSS(c)

σ2
| data, c ∼ χ2

n−3.

Finally, the posterior distribution of β given the data as well as c and σ is

β | data, c, σ ∼ N3

(
β̂c, σ

2(XT
c Xc)

−1
)
,

where
β̂c := (XT

c Xc)
−1XT

c y.

4 Posterior Sampling for Uncertainty Quantification

A useful way of visualizing the uncertainty is to draw posterior samples from the unknown
parameters, and then plot the corresponding fitted values along with the observed data. The
algorithm for drawing the posterior samples is as follows.

1. Obtain samples c(1), . . . , c(N) by sampling, with replacement, from the set of possible
values of c : {2, . . . , n} with probability weights given by the posterior pmf π(c | data).
For this, one can use, for example, the choice function in np.random.default rng().

2. For each j = 1, . . . , N ,

a) Fix c = c(j).

b) Calculate RSS(c) and β̂c by implementing linear regression with fixed c.

c) Generate a chi-squared random variable χ2 with n− 3 degrees of freedom. Take
σ(j) =

√
RSS(c)/χ2.

d) Take β(j) to be a generated random vector from the multivariate normal distri-
bution with mean β̂c and covariance (σ(j))2(XT

c Xc)
−1.

Suppose the posterior samples are given by (c(j), β
(j)
0 , β

(j)
1 , β

(j)
2 , σ(j)) for j = 1, . . . , N . The

corresponding fitted values are given by:

t 7→ β
(j)
0 + β

(j)
1 t+ β

(j)
2 ReLU(t− c(j))

3



for t = 1, . . . , n. These can be plotted along with the original data.

One can also plot vertical lines corresponding to c(j) to visualize uncertainty in the change-
of-slope time point parameter c.

The 95% approximate credible intervals for each parameter can be obtained by computing
the 2.5th and 97.5th percentiles of the corresponding posterior samples.

Suppose you want to obtain posterior samples for yt∗ for a future time point t∗. One can

follow the algorithm listed above with one additional step to generate y
(j)
t∗ , j = 1, . . . , N as

follows:

1. Obtain samples c(1), . . . , c(N) by sampling, with replacement, from the set of possible
values of c : {2, . . . , n} with probability weights given by the posterior pmf π(c | data).
For this, one can use, for example, the choice function in np.random.default rng().

2. For each j = 1, . . . , N ,

a) Fix c = c(j).

b) Calculate RSS(c) and β̂c by implementing linear regression with fixed c.

c) Generate a chi-squared random variable χ2 with n− 3 degrees of freedom. Take
σ(j) =

√
RSS(c)/χ2.

d) Take β(j) to be a generated random vector from the multivariate normal distri-
bution with mean β̂c and covariance (σ(j))2(XT

c Xc)
−1.

e) Generate y
(j)
t∗ from the normal distribution with mean β

(j)
0 +β

(j)
1 t∗+β

(j)
2 ReLU(t∗−

c(j)) and variance (σ(j))2.

5 More Changes of Slope

Suppose we want to introduce two break points for the regression line. This can be done via:

yt = β0 + β1t+ β2ReLU(t− c1) + β3ReLU(t− c2) + εt

with εt
i.i.d∼ N(0, σ2). This model can also be written as

y = Xcβ + ε

where c = (c1, c2) and

Xc :=



1 1 ReLU(1− c1) ReLU(1− c2)
1 2 ReLU(2− c1) ReLU(2− c2)
1 3 ReLU(3− c1) ReLU(3− c2)
· · · ·
· · · ·
· · · ·
1 n ReLU(n− c1) ReLU(n− c2)


The MLE of c = (c1, c2) is given by the minimizer of RSS(c) over all c = (c1, c2) with
c1, c2 ∈ {1, . . . , n}, and

RSS(c) = min
β
‖y −Xcβ‖2.
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One can numerically minimize RSS(c) over all c1, c2 ∈ {1, . . . , n}. The posterior of c be-
comes:

π(c | data) ∝
(

1

RSS(c)

)(n−4)/2

|XT
c Xc|−1/2.

For more break points, one can consider:

yt = β0 + β1t+

k∑
j=1

βj+1ReLU(t− cj) + εt.

Conceptually estimation and inference here proceed just as before with Xc changed appro-
priately. But the method can become computationally expensive if k ≥ 4.
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