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We shall discuss three simple high-dimensional models for time series y1, . . . , yn. The first
model was already discussed last week, the second model is new but very simple, and the
third model is the same as the spectrum model from last lecture. The second model makes
it easier to understand the third model.

1 Model One

This is the model
yt

ind∼ N(µt, σ
2)

where ind stands for “independently distributed as”. Note that the right hand side depends
on t so the distribution of yt changes with t and we cannot therefore use “i.i.d”.

The parameters in this model are µ1, . . . , µn and σ2. Clearly this is a high-dimensional
because the number of parameters is large.

If we attempt to estimate the parameters by maximizing the likelihood without any reg-
ularization, we get µt = yt and σ2 = 0, leading to full interpolation (overfitting) to the
data. Regularization is therefore necessary to obtain something useful. If we want to ob-
tain “smooth” trend estimates, we can employ regularization terms which force neighboring
values or neighboring slopes of µt to be close. If we focus on slopes (which leads to more

smoothness compared to just imposing closeness of values), we obtain the estimators µ̂ridge
t (λ)

and µ̂lasso
t (λ) which minimize:

n∑
t=1

(yt − µt)
2 + λ

n−1∑
t=2

((µt+1 − µt)− (µt − µt−1))
2

and
n∑

t=1

(yt − µt)
2 + λ

n−1∑
t=2

|(µt+1 − µt)− (µt − µt−1)|

respectively. We have already studied these estimators last week where we observed, among
other things, that they can be alternatively represented as µ̂ridge

t (λ) = Xβ̂ridge(λ) and
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µ̂lasso
t (λ) = Xβ̂lasso(λ) where

X =



1 0 0 · · · 0
1 1 0 · · · 0
1 2 1 · · · 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 n− 1 n− 2 · · · 1


and β =



β0
β1
β2
·
·
·

βn−1


(1)

and β̂ridge(λ) and β̂lasso(λ) minimize

∥y −Xβ∥2 +
n−1∑
t=2

β2
t

and

∥y −Xβ∥2 +
n−1∑
t=2

|βt|

respectively.

This model is an example of a “Mean Model” where the focus is on estimating the mean
parameters µt. In contrast, the next two models will be examples of “Variance Models”.

2 Model Two

This is the model
yt

ind∼ N(0, τ2t ) (2)

The parameters are τ21 , . . . , τ
2
n. Since these represent variances, we refer to this as a “variance

model”. τt can be interpreted as the magnitude of yt. This model is useful when we care
only about the magnitudes of the observations yt (and not their signs).

Model (2) (similar to Model One from the previous section) is also a high-dimensional
model because the number of parameters is large.

The likelihood is proportional to

n∏
t=1

1

τt
exp

(
− y2t
2τ2t

)
. (3)

Note that the likelihood depends on the data only through the squares y21, . . . , y
2
n. Therefore

the squares y21, . . . , y
2
n form the “sufficient statistic” in this model. Under (2), we have

y2t
ind∼ τ2t χ

2
1

where χ2
1 denotes the chi-squared distribution with 1 degree of freedom. Instead of writing the

likelihood in terms of the raw data yt, we can also write the likelihood using the squares y2t .
This will lead to a slightly different form for the likelihood that should still be proportional
to (3). To see this, observe that the density of χ2

1 is proportional to x−1/2 exp(−x/2) so that
the density of τ2t χ

2
1 is proportional to

1

τ2t

(
x

τ2t

)−1/2

exp

(
− x

2τ2t

)
= x−1/2 1

τt
exp

(
− x

2τ2t

)
.
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The likelihood written in terms of y21, . . . , y
2
n is thus

n∏
t=1

(y2t )
−1/2 1

τt
exp

(
− y2t
2τ2t

)
.

The term (y2t )
−1/2 above can be dropped as it is a constant not depending on the parameters

τ2t . Dropping it leads to (3).

The log-likelihood is:
n∑

t=1

(
− log τt −

y2t
2τ2t

)
.

It is a convention to write optimization problems for computing estimators as minimization
problems (as opposed to maximization). For this, we write the negative log-likelihood which
is given by:

n∑
t=1

(
log τt +

y2t
2τ2t

)
.

As τt is a standard deviation parameter that is constrained to be positive, it is better to deal
with αt = log τt instead of τt directly. This reparameterization has the following benefits:

• Unconstrained Optimization: Unlike τt, which must be positive, αt can take any
real value, allowing for more stable numerical optimization.

• Improved Computational Stability: Variance parameters can vary over several
orders of magnitude, and working in the log scale reduces numerical precision issues.

Because of these benefits, many variance modeling approaches use log-variance transforma-
tions (see e.g., stochastic volatility models).

Writing the negative log-likelihood in terms of αt = log τt, we get

n∑
t=1

(
αt +

y2t
2
e−2αt

)
If we minimize the above (without any additional regularization) with respect to αt, we
obtain αt = log |yt|, or equivalently, τ2t = y2t . In other words, the parameters τ2t will fully
interpolate (overfit) the sufficient statistics y2t .

For a more useful estimation procedure, we need to introduce regularization. If we assume
that αt is smooth, we can add the penalty

∑n−1
t=2 ((αt+1−αt)−(αt−αt−1))

2 or
∑n−1

t=2 |(αt+1−
αt)− (αt − αt−1)| to the negative log-likelihood. This leads to the estimators α̂ridge

t (λ) and
α̂lasso
t (λ) which are defined as the minimizers of

n∑
t=1

(
αt +

y2t
2
e−2αt

)
+ λ

n−1∑
t=2

((αt+1 − αt)− (αt − αt−1))
2

and
n∑

t=1

(
αt +

y2t
2
e−2αt

)
+ λ

n−1∑
t=2

|(αt+1 − αt)− (αt − αt−1)|

respectively. The penalties encourage smoothness in {αt}, leading to more stable and in-
terpretable variance estimates. These optimizations are convex and they can be solved,
for example, using functions from the python library cvxpy just as we solved β̂ridge(λ) and
β̂lasso(λ) from the previous section.
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3 Model Three

Model three is essentially Model two but applied to the DFT. In order to describe this, let
us first revisit the DFT. Given a time series y0, . . . , yn−1, its DFT is b0, b1, . . . , bn−1 where

bj =

n−1∑
t=0

yt exp

(
−2πijt

n

)
.

bj is a complex number with real and imaginary parts given by

Re(bj) =

n−1∑
t=0

yt cos

(
2πjt

n

)
and Im(bj) = −

n−1∑
t=0

yt sin

(
2πjt

n

)
When j = 0, the imaginary part is zero and we get b0 =

∑n−1
t=0 yt. b0 is therefore just the

sum of the datapoints and it does not provide any information on cycles etc.

Another fact that we previously verified is bn−j = b̄j (here b̄j denotes the complex conjugate
of bj). Because of this property, the later half of the DFT terms is redundant (as they can
be recovered from the first half).

If n is odd and m = (n − 1)/2, then the most important DFT terms are b1, . . . , bm. The
other terms are b0 which is simply the sum of the data points and bm+1, . . . , bn−1 which are
simply the complex conjugates of bm, bm−1, . . . , b1.

If n is even and m = (n − 2)/2, then the most important DFT terms are b1, . . . , bm
and bm+1. The other DFT terms are b0 which is simply the sum of the data points and
bm+2, . . . , bn−1 which are the complex conjugates of bm, . . . , b1. Note in this case that m+1 =
bn/2 will have zero imaginary part (hence bm+1 is real).

Below we focus on the case where n is odd for simplicity, and take m = (n− 1)/2. Model
three is obtained by using Model two for the DFT terms b1, . . . , bm. Because bj can be
complex, we use the modeling assumption for both the real and imaginary parts:

Re(bj), Im(bj)
i.i.d∼ N(0, γ2j ) for j = 1, . . . ,m. (4)

We also assume that bj are independent across j. The unknown parameters in this model
are γ1, . . . , γm. γj represents the strength of the sinusoids at frequency j/n.

The likelihood corresponding to (4) is proportional to:

m∏
j=1

1

γj
exp

(
−(Re(bj))

2

2γ2j

)
1

γj
exp

(
−(Im(bj))

2

2γ2j

)

=

m∏
j=1

1

γ2j
exp

(
−(Re(bj))

2 + (Im(bj))
2

2γ2j

)
=

m∏
j=1

1

γ2j
exp

(
−|bj |2

2γ2j

)
.

Therefore the likelihood depends on the squared magnitudes |bj |2 of the DFT coefficients.
Recall that the periodogram I(j/n) is defined as

I(j/n) :=
|bj |2

n
.

We can therefore rewrite the likelihood in terms of the periodogram as follows:

m∏
j=1

1

γ2j
exp

(
−nI(j/n)

2γ2j

)
. (5)
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This likelihood depends on the data only through the periodogram ordinates I(j/n) for
j = 1, . . . ,m. Therefore the periodogram forms the sufficient statistic in this model. Under
(4), we have

I(j/n) =
1

n
|bj |2 =

1

n

(
(Re(bj))

2 + (Im(bj))
2
)
∼

γ2j
n
χ2
2.

The model can therefore be written directly in terms of the periodogram as

I(j/n)
ind∼

γ2j
n
χ2
2 for j = 1, . . . ,m.

We can write the likelihood for the above model in terms of the periodogram and this would
be proportional to (5). Note also that χ2

2 distribution with two degrees of freedom actually
coincides with the Exponential distribution with λ parameter equal to 1/2.

Intuitively, Model (4) does not care so much about the individual DFT coefficients bj but
only their magnitude.

The negative log-likelihood corresponding to (5) is

m∑
j=1

(
2 log γj +

nI(j/n)

2γ2j

)
.

As in the case of Model two, for optimization purposes we work with the logarithms of γj .
Let αj = log γj . The negative log-likelihood in terms of αj is

m∑
j=1

(
2αj +

nI(j/n)

2
e−2αj

)
.

If we directly minimize the above with respect to αj (without any additional regularization),
we get

αj = log

√
nI(j/n)

2
and γ2j = e2αj =

nI(j/n)

2
.

This basically means that the γ2j parameters fully interpolate the periodogram leading to
full overfitting. For more meaningful estimation, we need to add regularization. If we
assume smoothness of αj , we can add the penalty

∑m−1
j=2 ((αj+1 − αj) − (αj − αj−1))

2 or∑m−1
j=2 |(αj+1−αj)− (αj −αj−1)| to the negative log-likelihood. This leads to the estimators

α̂ridge
t (λ) and α̂lasso

t (λ) which are defined as the minimizers of

m∑
j=1

(
2αj +

nI(j/n)

2
e−2αj

)
+ λ

m−1∑
j=2

((αj+1 − αj)− (αj − αj−1))
2

and
n∑

t=1

(
2αj +

nI(j/n)

2
e−2αj

)
+ λ

m−1∑
j=2

|(αj+1 − αj)− (αj − αj−1)|

respectively. The penalties encourage smoothness in {αj}, leading to more stable and inter-
pretable estimates for {γj}.

In the next lecture, we shall explain the equivalence of this model with the spectrum model
from last lecture. We shall also explore some applications for this model.
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