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1 Bayesian Inference for Regression

We observe a time series yi, ..., y,. We can fit a line to this data using the model:

Y = Po + Bit + & with € i N(0,0%). (1)

We can fit a more complicated trend function such as the cubic function to the data using
the model:

ye = o+ Pit + Bt + B3t® + e with e '~ N(0,07). 2)

(1) and (2) are both examples of the multiple linear regression model. More generally, the
multiple linear regression model is given by:

) iid
Yi = Bo + Pixit + Paxio + - + BmTim + € with ¢ "% N(0,0?). (3)

There are m covariates here and x;; is the ith value of the j™* covariate. (1) is a special case
of (3) withm =1and x;; =i fori=1,...,n. (2)is a special case of (3) with m = 3 and
Tl = 1,20 = 12, 243 = i5. We shall assume that n is much larger than m (the case where n
is comparable or even smaller to m is known as high-dimensional linear regression and we
shall look at this later).

In Bayesian inference for (3), we work with the prior
bid .
BO) Bla s 7Bma IOgU = unlf(—C, C)
for a very large positive C. The joint posterior density of Sy, ..., Bm, o is then given by
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The above is the joint posterior over By, 51, ..., 8mo. The posterior over only the coefficient



parameters [y, 31 can be obtained by integrating (or marginalizing) the parameter o.
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Using the notation

n

S(Bo, B, Bm) =3 _(yi — Bo — B1zir — -+ — BmTim)’,
i=1
we can write
1 n/2
y B, x . 4
fﬁo,ﬁ1,...,5m|data(/80 /61 Bm) (S(BO, /81, L /Bm)) ( )
The mode of the above posterior is the least squares estimates Bo, ey Bm which minimize

S(Bo, - .-, Pm) over all values of Sy,...,Bn. (4) is equivalent to

N
S(ﬁoaﬁlw--»ﬁm)> (5)
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Note that (4) and (5) represent exactly the same density because the term (.S (BO, Bi,..., 3m)”/ 2
does not depend on (g, 51,. .., Bmn and is thus a constant.

The density (5) represents a multivariate ¢-distribution (see https://en.wikipedia.org/
wiki/Multivariate_t-distribution). We demonstrate this below. It will be convenient
to use the following vector-matrix notation here:

" 1 11 .- Tim 50 /6:)0
. 1z ... 2om S B
Yn 1 Zp1 oo Zom Bm B

With this notation, one can check that

S(8) = S(Bo,- -, Bm) = |y — XB|*.

The following facts will be important:


https://en.wikipedia.org/wiki/Multivariate_t-distribution
https://en.wikipedia.org/wiki/Multivariate_t-distribution

1. Fact 1: the least squares estimator B is given by the formula:
B=(XTX)"'XTy. (6)
The proof of (6) is as follows. The gradient of S(3) is given by

VS(8) =V [lly — XB|?]
=V [ly—-XB)"(y—Xp)]
=V [Ty - BTXTy -y X5+ TXTXB] = 2XTy — 2XTXB.

Because ﬁ minimizes S(f), the gradient should equal zero when § = B, and this leads
to

XTy-XB) =0 = XTXp=x"y = p=XTX)"'xTy. (7)
2. Fact 2: The following Pythagorean identity holds:
S(B) = S(B) + X5 — XB|* = S(B) + (8- B) XTX(5 - B). (8)
To prove (8), write

S(B) =y — XB|?
=y — XB+XB—Xp|

= lly— XBIP +1X8 - XBI* +2(y - XB, X3 - XB).
The cross product is zero (leading to (8)) because:
(y— X, x5-x8) = (x5~ x5)" (v XP)
(5-8) x"-xB)=(B-8) (XTy-X"X5) =0

where we used (7).

Using (8), we can write the posterior density (5) as
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The formula for the multivariate ¢-distribution will be reviewed next which will make clear
that the above is an instance of the ¢t-density.

2 Multivariate t-density

The multivariate t-density is obtained by changing the scale of a multivariate normal
density. Let X have the p-variate normal distribution N,(u,%). This means that X is a



px 1 random vector, p is a p X 1 vector, ¥ is a p X p (positive-definite) matrix and the density
of X is equal to

1
— ex
N O (
Let V be a chi-squared random variable with v degrees of freedom and assume that V' and
X are independent. Define

—;@—Mfﬁl@—MO-

Note that X and T are both p x 1 random vectors while V' is a scalar. In other words, T is
given by

X1—m
7 w1+ v
_ . . (10)
T, L + Xa—pd

\/E
Note specifically that the scale change on each component is given by the same random

variable V.

The distribution of this random vector T" will be denoted by t, ,(p, X). Its density can be
derived in the following way:

fr(y) :/0 fT|V:x(y)fv(:U)dm.
Observe that .
T|V:x~N(m;@

so that
1
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where we used det(2Y) = (v/x)Pdet(X). As a result
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The change of variable
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Therefore the density corresponding to t, ,(x, ¥) distribution is proportional to

1
Y — T (11)

L+ 5y -y —p)] =
Note that, in the notation ¢, ,(x, ), v denotes degrees of freedom, p denotes dimension, p

and X denote the mean vector and covariance matrix of the corresponding normal random
vector X.

When v is large, t, (1, X) is very close to Np(u, X). The following fact will be useful in
the sequel.

Fact 2.1. If T ~ t, (1, X) has components T, ..., Ty, then, for each j =1,...,p,

T ~ ty (g, 2(5, 7))

where (i is the Gt component of p and $(4,7) is the (j,7)" entry of X.

This fact follows directly from (10) (and the univariate definition of the t-density ¢, 1)

because
Xj =k

\/g

Tj=py+

and Xj ~ N(pj,%(j,7))-

3 Back to the Bayesian Posterior in Linear Regression

Let us compare (9) and (11), and choose the parameters of the ¢-density so that (11) matches
(9). First note that the dimension p = m + 1 (as 8 has m + 1 components). Matching the
powers (n/2) and (p +v)/2, we get

v=n—p=n—m-—1L1

It is also clear that u = B and

IZ—IZXTA)( — Y = S(B)(XTX)—IZ S(/B) (XTX)_I.
v S(B) v n—m-—1

We have thus proved that

ﬁ | data ~ tTL*ﬂ’L*l,’ﬂ’L‘i’l (B, TLS(B)1(XTX)_1> .

As we remarked in the frequentist treatment of the simple linear regression model, the
quantity S(B)/(n —m — 1) is the frequentist unbiased estimator of 0. So we denote

V(1)
n—m-—1
With this notation, we get
B | data ~ ty_m-1mi1 (B, 6'2(XTX)_1> . (12)



With the posterior density (12), one can do uncertainty quantification about the parameters
Bos B1, .-+, Bm- One can generate multiple samples from tn_m_17m+1(3,&2(XTX)*1) and
plot the resulting fitted values to visualize the uncertainty in the coeflicients. One can also
use Fact 2.1 to deduce that

,3]' ’ data ~ tn—m—l,l(B]ﬁ &Z(XTX)jJrl’jJrl) (13)

where (X7 X)L+ is the (4 1) diagonal entry of (X7 X)~!. These univariate t-densities
describe the marginal uncertainty in the j* coefficient Bj.

When n is large, the t-density (12) is approximately equal to the NmH(B, F2(XTX)™).
Further, when n is large, the distribution (13) will be close to the normal distribution
N(B;,62(XTX)t1i+1) The quantity /(XTX) 17+ is known as the standard error
corresponding to ;.
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