STAT 153 & 248 - Time Series Lecture Four

Spring 2025, UC Berkeley

Aditya Guntuboyina

January 30, 2025

1 Bayesian Inference for Regression

We observe a time series y_1, \ldots, y_n . We can fit a line to this data using the model:

$$y_t = \beta_0 + \beta_1 t + \epsilon_t \quad \text{with } \epsilon_t \stackrel{\text{i.i.d}}{\sim} N(0, \sigma^2).$$
 (1)

We can fit a more complicated trend function such as the cubic function to the data using the model:

$$y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \epsilon_t \quad \text{with } \epsilon_t \stackrel{\text{i.i.d}}{\sim} N(0, \sigma^2).$$
 (2)

(1) and (2) are both examples of the multiple linear regression model. More generally, the multiple linear regression model is given by:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_m x_{im} + \epsilon_i \quad \text{with } \epsilon_i \stackrel{\text{i.i.d}}{\sim} N(0, \sigma^2).$$
 (3)

There are m covariates here and x_{ij} is the i^{th} value of the j^{th} covariate. (1) is a special case of (3) with m = 1 and $x_{i1} = i$ for i = 1, ..., n. (2) is a special case of (3) with m = 3 and $x_{i1} = i, x_{i2} = i^2, x_{i3} = i^3$. We shall assume that n is much larger than m (the case where n is comparable or even smaller to m is known as high-dimensional linear regression and we shall look at this later).

In Bayesian inference for (3), we work with the prior

$$\beta_0, \beta_1, \dots, \beta_m, \log \sigma \stackrel{\text{i.i.d}}{\sim} \text{unif}(-C, C)$$

for a very large positive C. The joint posterior density of $\beta_0, \ldots, \beta_m, \sigma$ is then given by

$$f_{\beta_0,\beta_1,\sigma|\text{data}}(\beta_0,\beta_1,\ldots,\beta_m,\sigma)$$

$$\propto \sigma^{-n-1} \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_m x_{im})^2\right) I\left\{-C < \beta_0, \beta_1, \dots, \beta_m, \log \sigma < C\right\}.$$

The above is the joint posterior over $\beta_0, \beta_1, \dots, \beta_m \sigma$. The posterior over only the coefficient

parameters β_0, β_1 can be obtained by integrating (or marginalizing) the parameter σ .

$$\begin{split} & f_{\beta_0,\beta_1,\dots,\beta_m|\text{data}}(\beta_0,\beta_1,\dots,\beta_m) \\ & = \int f_{\beta_0,\beta_1,\dots,\beta_m,\sigma|\text{data}}(\beta_0,\beta_1,\dots,\beta_m,\sigma) d\sigma \\ & \propto I\{-C < \beta_0,\beta_1,\dots,\beta_m < C\} \int_{e^{-C}}^{e^C} \sigma^{-n-1} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_m x_{im})^2\right) d\sigma \\ & \approx I\{-C < \beta_0,\beta_1,\dots,\beta_m < C\} \int_0^\infty \sigma^{-n-1} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_m x_{im})^2\right) d\sigma \\ & = I\{-C < \beta_0,\beta_1,\dots,\beta_m < C\} \left(\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_m x_{im})^2\right)^{-n/2} \int_0^\infty s^{-n-1} \exp\left(-\frac{1}{2s^2}\right) ds \\ & \propto I\{-C < \beta_0,\beta_1,\dots,\beta_m < C\} \left(\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_m x_{im})^2\right)^{-n/2} \\ & \approx \left(\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_m x_{im})^2\right)^{-n/2} \end{split}$$

Using the notation

$$S(\beta_0, \beta_1, \dots, \beta_m) := \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_m x_{im})^2,$$

we can write

$$f_{\beta_0,\beta_1,\dots,\beta_m|\text{data}}(\beta_0,\beta_1,\dots,\beta_m) \propto \left(\frac{1}{S(\beta_0,\beta_1,\dots,\beta_m)}\right)^{n/2}.$$
 (4)

The mode of the above posterior is the least squares estimates $\hat{\beta}_0, \ldots, \hat{\beta}_m$ which minimize $S(\beta_0, \ldots, \beta_m)$ over all values of β_0, \ldots, β_m . (4) is equivalent to

$$f_{\beta_0,\beta_1,\dots,\beta_m|\text{data}}(\beta_0,\beta_1,\dots,\beta_m) \propto \left(\frac{S(\hat{\beta}_0,\hat{\beta}_1,\dots,\hat{\beta}_m)}{S(\beta_0,\beta_1,\dots,\beta_m)}\right)^{n/2}$$
(5)

Note that (4) and (5) represent exactly the same density because the term $(S(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_m)^{n/2}$ does not depend on $\beta_0, \beta_1, \dots, \beta_m$ and is thus a constant.

The density (5) represents a multivariate t-distribution (see https://en.wikipedia.org/wiki/Multivariate_t-distribution). We demonstrate this below. It will be convenient to use the following vector-matrix notation here:

$$y = \begin{pmatrix} y_1 \\ \vdots \\ \vdots \\ y_n \end{pmatrix} \quad X = \begin{pmatrix} 1 & x_{11} & \dots & x_{1m} \\ 1 & x_{21} & \dots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{nm} \end{pmatrix} \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \vdots \\ \beta_m \end{pmatrix} \quad \hat{\beta} = \begin{pmatrix} \beta_0 \\ \hat{\beta}_1 \\ \vdots \\ \vdots \\ \beta_m \end{pmatrix}$$

With this notation, one can check that

$$S(\beta) = S(\beta_0, \dots, \beta_m) = ||y - X\beta||^2.$$

The following facts will be important:

1. Fact 1: the least squares estimator $\hat{\beta}$ is given by the formula:

$$\hat{\beta} = (X^T X)^{-1} X^T y. \tag{6}$$

The proof of (6) is as follows. The gradient of $S(\beta)$ is given by

$$\nabla S(\beta) = \nabla \left[\|y - X\beta\|^2 \right]$$

$$= \nabla \left[(y - X\beta)^T (y - X\beta) \right]$$

$$= \nabla \left[y^T y - \beta^T X^T y - y^T X\beta + \beta^T X^T X\beta \right] = 2X^T y - 2X^T X\beta.$$

Because $\hat{\beta}$ minimizes $S(\beta)$, the gradient should equal zero when $\beta = \hat{\beta}$, and this leads to

$$X^{T}(y - X\hat{\beta}) = 0 \implies X^{T}X\hat{\beta} = X^{T}y \implies \hat{\beta} = (X^{T}X)^{-1}X^{T}y. \tag{7}$$

2. Fact 2: The following Pythagorean identity holds:

$$S(\beta) = S(\hat{\beta}) + ||X\beta - X\hat{\beta}||^2 = S(\hat{\beta}) + (\beta - \hat{\beta})^T X^T X(\beta - \hat{\beta}). \tag{8}$$

To prove (8), write

$$S(\beta) = \|y - X\beta\|^{2}$$

$$= \|y - X\hat{\beta} + X\hat{\beta} - X\beta\|^{2}$$

$$= \|y - X\hat{\beta}\|^{2} + \|X\hat{\beta} - X\beta\|^{2} + 2\langle y - X\hat{\beta}, X\hat{\beta} - X\beta\rangle.$$

The cross product is zero (leading to (8)) because:

where we used (7).

Using (8), we can write the posterior density (5) as

$$f_{\beta|\text{data}}(\beta) \propto \left(\frac{S(\hat{\beta})}{S(\beta)}\right)^{n/2}$$

$$= \left(\frac{S(\hat{\beta})}{S(\hat{\beta}) + (\beta - \hat{\beta})^T X^T X (\beta - \hat{\beta})}\right)^{n/2}$$

$$= \left(1 + (\beta - \hat{\beta})^T \frac{X^T X}{S(\hat{\beta})} (\beta - \hat{\beta})\right)^{-n/2}.$$
(9)

The formula for the multivariate t-distribution will be reviewed next which will make clear that the above is an instance of the t-density.

2 Multivariate t-density

The multivariate t-density is obtained by changing the scale of a **multivariate** normal density. Let X have the p-variate normal distribution $N_p(\mu, \Sigma)$. This means that X is a

 $p \times 1$ random vector, μ is a $p \times 1$ vector, Σ is a $p \times p$ (positive-definite) matrix and the density of X is equal to

$$x \mapsto \frac{1}{(2\pi)^{p/2}\sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

Let V be a chi-squared random variable with v degrees of freedom and assume that V and X are independent. Define

 $T := \mu + \frac{X - \mu}{\sqrt{\frac{V}{v}}}.$

Note that X and T are both $p \times 1$ random vectors while V is a scalar. In other words, T is given by

$$\begin{pmatrix}
T_1 \\
\cdot \\
\cdot \\
\cdot \\
T_d
\end{pmatrix} = \begin{pmatrix}
\mu_1 + \frac{X_1 - \mu_1}{\sqrt{\frac{V}{v}}} \\
\cdot \\
\cdot \\
\mu_d + \frac{X_d - \mu_d}{\sqrt{\frac{V}{v}}}
\end{pmatrix} .$$
(10)

Note specifically that the scale change on each component is given by the same random variable V.

The distribution of this random vector T will be denoted by $t_{v,p}(\mu, \Sigma)$. Its density can be derived in the following way:

$$f_T(y) = \int_0^\infty f_{T|V=x}(y) f_V(x) dx.$$

Observe that

$$T \mid V = x \sim N\left(\mu, \frac{v}{x}\Sigma\right)$$

so that

$$f_{T|V=x}(y) = \frac{1}{(2\pi)^{p/2} \sqrt{\det(\frac{v}{x}\Sigma)}} \exp\left[-\frac{1}{2} (y-\mu)^T \left(\frac{v}{x}\Sigma\right)^{-1} (y-\mu)\right]$$
$$= \frac{x^{p/2}}{(2\pi)^{p/2} v^{p/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{x}{2v} (y-\mu)^T \Sigma^{-1} (y-\mu)\right)$$

where we used $\det(\frac{v}{x}\Sigma) = (v/x)^p \det(\Sigma)$. As a result

$$f_T(y) = \int_0^\infty f_{T|V=x}(y) f_V(x) dx$$

$$\propto \int_0^\infty \frac{x^{p/2}}{(2\pi)^{p/2} v^{p/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{x}{2v} (y-\mu)^T \Sigma^{-1} (y-\mu)\right) x^{\frac{v}{2}-1} e^{-x/2} dx$$

$$\propto \int_0^\infty x^{\frac{p+v}{2}-1} \exp\left(-\frac{x}{2} \left[1 + \frac{1}{v} (y-\mu)^T \Sigma^{-1} (y-\mu)\right]\right) dx.$$

The change of variable

$$t = x \left[1 + \frac{1}{v} (y - \mu)^T \Sigma^{-1} (y - \mu) \right]$$

leads to

$$f_T(y) \propto \frac{1}{\left[1 + \frac{1}{v}(y - \mu)^T \Sigma^{-1}(y - \mu)\right]^{\frac{v+p}{2}}} \int_0^\infty t^{\frac{v+p}{2} - 1} e^{-t/2} dt$$
$$\propto \frac{1}{\left[1 + \frac{1}{v}(y - \mu)^T \Sigma^{-1}(y - \mu)\right]^{\frac{v+p}{2}}}.$$

Therefore the density corresponding to $t_{v,p}(\mu, \Sigma)$ distribution is proportional to

$$y \mapsto \frac{1}{\left[1 + \frac{1}{v}(y - \mu)^T \Sigma^{-1}(y - \mu)\right]^{\frac{v+p}{2}}}.$$
 (11)

Note that, in the notation $t_{v,p}(\mu, \Sigma)$, v denotes degrees of freedom, p denotes dimension, μ and Σ denote the mean vector and covariance matrix of the corresponding normal random vector X.

When v is large, $t_{v,p}(\mu, \Sigma)$ is very close to $N_p(\mu, \Sigma)$. The following fact will be useful in the sequel.

Fact 2.1. If $T \sim t_{v,p}(\mu, \Sigma)$ has components T_1, \ldots, T_p , then, for each $j = 1, \ldots, p$,

$$T_j \sim t_{v,1}(\mu_j, \Sigma(j,j))$$

where μ_j is the j^{th} component of μ and $\Sigma(j,j)$ is the $(j,j)^{th}$ entry of Σ .

This fact follows directly from (10) (and the univariate definition of the t-density $t_{v,1}$) because

$$T_j = \mu_j + \frac{X_j - \mu_j}{\sqrt{\frac{V}{v}}}$$

and $X_j \sim N(\mu_j, \Sigma(j, j))$.

3 Back to the Bayesian Posterior in Linear Regression

Let us compare (9) and (11), and choose the parameters of the t-density so that (11) matches (9). First note that the dimension p = m + 1 (as β has m + 1 components). Matching the powers (n/2) and (p + v)/2, we get

$$v = n - p = n - m - 1.$$

It is also clear that $\mu = \hat{\beta}$ and

$$\frac{1}{v}\Sigma^{-1} = \frac{X^T X}{S(\hat{\beta})} \implies \Sigma = \frac{S(\hat{\beta})}{v}(X^T X)^{-1} = \frac{S(\hat{\beta})}{n - m - 1}(X^T X)^{-1}.$$

We have thus proved that

$$\beta \mid \text{data} \sim t_{n-m-1,m+1} \left(\hat{\beta}, \frac{S(\hat{\beta})}{n-m-1} (X^T X)^{-1} \right).$$

As we remarked in the frequentist treatment of the simple linear regression model, the quantity $S(\hat{\beta})/(n-m-1)$ is the frequentist unbiased estimator of σ^2 . So we denote

$$\hat{\sigma} := \sqrt{\frac{S(\hat{\beta})}{n - m - 1}}.$$

With this notation, we get

$$\beta \mid \text{data} \sim t_{n-m-1,m+1} \left(\hat{\beta}, \hat{\sigma}^2 (X^T X)^{-1} \right).$$
 (12)

With the posterior density (12), one can do uncertainty quantification about the parameters $\beta_0, \beta_1, \ldots, \beta_m$. One can generate multiple samples from $t_{n-m-1,m+1}(\hat{\beta}, \hat{\sigma}^2(X^TX)^{-1})$ and plot the resulting fitted values to visualize the uncertainty in the coefficients. One can also use Fact 2.1 to deduce that

$$\beta_j \mid \text{data} \sim t_{n-m-1,1}(\hat{\beta}_j, \hat{\sigma}^2(X^T X)^{j+1,j+1})$$
 (13)

where $(X^TX)^{j+1,j+1}$ is the $(j+1)^{th}$ diagonal entry of $(X^TX)^{-1}$. These univariate t-densities describe the marginal uncertainty in the j^{th} coefficient β_j .

When n is large, the t-density (12) is approximately equal to the $N_{m+1}(\hat{\beta}, \hat{\sigma}^2(X^TX)^{-1})$. Further, when n is large, the distribution (13) will be close to the normal distribution $N(\hat{\beta}_j, \hat{\sigma}^2(X^TX)^{j+1,j+1})$. The quantity $\hat{\sigma}\sqrt{(X^TX)^{j+1,j+1}}$ is known as the standard error corresponding to β_j .