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1 Nonlinear Regression

Today, we shall start our discussion on models in which certain parameters appear in non-
linear fashion. The simplest example is the sinusoidal model which we attempt to fit to
the sunspots data. Before we start discussing the sinusoidal model, let us review the basic
sinusoid functions.

2 The Sinusoid

When we say sinusoid, we refer to the following function of time (t):

s(t) := R cos(2πft+ φ) (1)

R is called the amplitude, f is called the frequency and Φ is called the phase. The quantity
1/f is called the period and 2πf is termed the angular frequency. Sometimes, we shall use
the notation ω = 2πf for the angular frequency.

Using the formula cos(α+β) = (cosα)(cosβ)−(sinα)(sinβ), we can represent the sinusoid
(1) in the following equivalent alternative form:

s(t) = A cos 2πft+B sin 2πft. (2)

The parameters A,B in (2) are related to R,φ in (1) via A = R cosφ and B = R sinφ.
While working with models involving sinuosoids, we use the representation (2) because the
parameters A and B appear linearly in (2).

2.1 Discrete sampling and restricting f to [0, 1/2]

Often in time series analysis, we work with equally spaced time points and assume that the
time variable t takes the values 1, . . . , n (where n is the sample size). It turns out that if we
consider the sinusoid (1) and restrict the time t to 1, . . . , n, then we can always constrain
the frequency parameter f to [0, 1/2]. This is a consequence of the following result.

Fact 2.1. For every f ∈ (−∞,∞) and φ ∈ (−∞,∞), there exists f0 ∈ [0, 1/2] and φ0 ∈
(−∞,∞) such that

s(t) = R cos(2πft+ φ) = R cos(2πf0t+ φ0) for all t = 1, . . . , n.
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Proof. Consider the following three cases.

1. If f < 0, then we can write cos(2πft+ φ) = cos(2π(−f)t− φ). Clearly, −f ≥ 0.

2. If f ≥ 1, then we write (below [f ] is the largest integer less than or equal to f):

cos(2πft+ φ) = cos(2π[f ]t+ 2π(f − [f ])t+ φ) = cos(2π(f − [f ])t+ φ),

because cos(·) is periodic with period 2π. Clearly 0 ≤ f − [f ] < 1.

3. If f ∈ [1/2, 1), then

cos(2πft+ φ) = cos(2πt− 2π(1− f)t+ φ) = cos(2π(1− f)t− φ)

because cos(2πt− x) = cosx for all integers t. Clearly 0 < 1− f ≤ 1/2.

Thus the sinusoid R cos(2πft + φ) equals R cos(2πf0t + φ0) at all integers t for some 0 ≤
f0 ≤ 1/2 and a phase φ0 that is possibly different from φ.

From now on, when we discuss sinusoids s(t) = R cos(2πft + φ) in the context of t =
1, . . . , n, we shall assume that the frequency parameter f is restricted to [0, 1/2]. Note also
the behavior of the sinusoid for the two frequency extremes f = 0 and f = 1/2. When f = 0,
the sinusoid s(t) is simply a constant function equal to R cos(φ). When f = 1/2, we have

s(t) = R cos(πt+ φ) = R(cosφ) cos(πt) = R(−1)t cosφ.

This sinusoid exhibits the maximum possible oscillation going back and forth between R cosφ
and −R cosφ.

3 The sinusoidal model

The simplest sinusoidal model for a time series y1, . . . .yn is

yt = β0 + β1 cos(2πft) + β2 sin(2πft) + εt where εt
i.i.d∼ N(0, σ2). (3)

The unknown parameters in this model are β0, β1, β2, σ as well as the frequency parameter
f . As discussed above, we assume that the frequency f lies between 0 and 0.5. If f is
assumed to be known, then clearly (3) is a multiple linear regression model and we can use
the techniques of the past few lectures to do inference on β0, β1, β2, σ. But if f is unknown
(as will be the case for the sunspots dataset for example), then this is a nonlinear regression
model.

We discuss the problem of parameter estimation and inference particularly focussing on
the parameter f .

3.1 MLE

Let us first discuss the MLE. The likelihood is given by:

fdata|f,β0,β1,β2,σ(y1, . . . , yn) =
n∏
t=1

1√
2πσ

exp

(
−(yt − β0 − β1 cos(2πft)− β2 sin(2πft))2

2σ2

)
∝ σ−n exp

(
−
∑n

t=1(yt − β0 − β1 cos(2πft)− β2 sin(2πft))2

2σ2

)
.

(4)

2



It is clear that the MLEs β̂0, β̂1, β̂2, f̂ will be given by minimizing the least squares criterion:

(β̂0, β̂1, β̂2, f̂) = argmin
β0,β1,β2,f

S(β0, β1, β2, f) (5)

where

S(β0, β1, β2, f) :=
n∑
t=1

(yt − β0 − β1 cos 2πft− β2 sin 2πft)2 (6)

Let us use here the following notation (previously similar notation was used in the context
of linear models):

y =


y1
·
·
·
yn

 and Xf =


1 cos(2πf(1)) sin(2πf(1))
· · ·
· · ·
· · ·
1 cos(2πf(n)) sin(2πf(n))

 and β =

β0β1
β2

 .

The Xf matrix is the same as the X-matrix in the linear model when f is assumed known
(its first column is all ones, second column is cos(2πft) evaluated at t = 1, . . . , n, and the
third column is sin(2πft) evaluated at t = 1, . . . , n).

With this notation, (6) becomes

S(β0, β1, β2, f) = S(β, f) = ‖y −Xfβ‖2. (7)

For each fixed value of f , the quantity S(β, f) is minimized (over β) at β = β̂(f) where

β̂(f) := (XT
f Xf )−1XT

f y.

Further
S(β̂(f), f) = min

β
S(β, f) = RSS(f)

where RSS(f) is the Residual Sum of Squares in the regression problem of y over Xf for
fixed f . Because

min
β,f

S(β, f) = min
f

(
min
β
S(β, f)

)
= min

f
S(β̂(f), f).

These observations can be put together to get the following algorithm for computing the
MLEs:

1. Take a grid of all possible values of f in the range [0, 1/2].

2. For each frequency value f in the grid,

a) Form the matrix Xf

b) Do a regression of y on Xf and compute the Residual Sum of Squares RSS(f)

3. Take f̂ to be the grid value which minimizes RSS(f) over all the grid values.

4. Take β̂ and σ̂ to be the usual regression estimates (of β and σ) in the linear regression
of y on Xf̂ .

After finding the MLE, the next step is uncertainty quantification (which involves getting
confidence intervals of the parameters etc.). However, this is tricky to do in this problem.
We will instead use Bayesian analysis for uncertainty quantification.
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3.2 Bayesian Inference

We shall work with the following prior. We assume that β0, β1, β2, σ, f are independent with

β0, β1, β2, log σ
i.i.d∼ unif(−C,C) and f ∼ unif[0, 1/2].

The priors on β0, β1, β2, σ are the same as before in linear regression. The prior on f is
confined to [0, 1/2] because, as already discussed, we are restricting the frequency parameter
to [0, 1/2].

The posterior joint density of all the parameters β, f, σ (here β denotes the vector consist-
ing of β0, β1β2) is given by

posterior(β, f, σ) ∝ likelihood× prior.

The likelihood is given in (4) and the prior is

prior density =
I{−C < β0, β1, β2, log σ < C}

(2C)4σ

I{0 ≤ f ≤ 1/2}
1/2

∝ I{−C < β0, β1, β2, log σ < C, 0 ≤ f ≤ 1/2}
σ

We shall drop the indicator terms involving C while writing the posterior because, as we
have seen previously in the case of linear regression, they will have essentially no impact on
the posterior. The posterior is thus given by

posterior(β, f, σ) ∝ σ−n−1 exp

(
−S(β, f)

2σ2

)
I{σ > 0}I{0 ≤ f ≤ 1/2}.

To get the posterior density of f alone (f is the most important parameter in the sinusoidal
model), we need to integrate the joint posterior density above with respect to β and σ:

posterior(f) ∝ I{0 ≤ f ≤ 1/2}
∫ ∞
0

σ−n−1
∫

exp

(
−S(β, f)

2σ2

)
dβdσ.

Let us first calculate the inner integral. S(β, f) is a quadratic function in β so that∫
exp(−S(β, f)/(2σ2))dβ should be related to the normalizing constants in the multivari-

ate normal density. To figure the integral precisely, we first use the Pythagorean identity
(discussed last lecture):

S(β, f) = S(β̂(f), f) +
(
β − β̂(f)

)T
XT
f Xf

(
β − β̂(f)

)
.

Thus

∫
exp

(
−S(β, f)

2σ2

)
dβ =

∫
exp

(
−S(β̂(f), f)

2σ2

)
exp

−
(
β − β̂(f)

)T
XT
f Xf

(
β − β̂(f)

)
2σ2

 dβ

= exp

(
−S(β̂(f), f)

2σ2

)∫
exp

−
(
β − β̂(f)

)T
XT
f Xf

(
β − β̂(f)

)
2σ2

 dβ

= exp

(
−S(β̂(f), f)

2σ2

)
(
√

2π)p
√

det
(
σ2(XT

f Xf )−1
)

= exp

(
−S(β̂(f), f)

2σ2

)
(
√

2π)pσp
∣∣XT

f Xf

∣∣−1/2
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where |XT
f Xf | = det(XT

f Xf ). Here p = 3 because there are three components inside β.
Therefore

posterior(f) ∝ I{0 ≤ f ≤ 1/2}
∫ ∞
0

σ−n−1 exp

(
−S(β̂(f), f)

2σ2

)
(
√

2π)pσp
∣∣XT

f Xf

∣∣−1/2 dσ
∝ I{0 ≤ f ≤ 1/2}

∣∣XT
f Xf

∣∣−1/2 ∫ ∞
0

σ−n+p−1 exp

(
−S(β̂(f), f)

2σ2

)
dσ.

The change of variable σ = s

√
S(β̂(f), f), gives

posterior(f) ∝ I{0 ≤ f ≤ 1/2}
∣∣XT

f Xf

∣∣−1/2( 1

S(β̂(f), f)

)(n−p)/2 ∫ ∞
0

t−n+p−1 exp

(
− 1

2t2

)
dt

∝ I{0 ≤ f ≤ 1/2}
∣∣XT

f Xf

∣∣−1/2( 1

S(β̂(f), f)

)(n−p)/2

.

The main term in this posterior is (S(β̂(f), f))−(n−p)/2 (the other term |XT
f Xf |−1/2 does

not vary significantly with f). It takes its largest value when f equals the MLE f̂ which
minimizes S(β̂(f), f). The size of the power n − p determines the amount of concentration
of the posterior around the MLE f̂ . When n is large, this posterior is concentrated very
tightly around f̂ .

This posterior is evaluated numerically over a grid of values of f in the range [0, 0.5]. The
term |XT

f Xf |−1/2 becomes infinite when |XT
f Xf | = 0 i.e., when Xf does not have full column

rank. This is the case when f = 0 or when f = 1/2. We need to exclude these edge cases
while computing this posterior.
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