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1 Spectrum Model

In the last lecture, we looked at the spectral model for a given time series dataset y0, . . . , yn−1.
In terms of the DFT b0, . . . , bn−1, the model is given by:

Re(bj), Im(bj)
i.i.d∼ N(0, γ2j ) (1)

for j = 1, . . . ,m where m = (n−1)/2 (we are assuming that n is odd). The unknown param-
eters in this model are γ21 , . . . , γ

2
m and γj represents the strength of sinusoids at frequency

j/n.

The likelihood corresponding to (1) is proportional to:
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2

2γ2j

)
1

γj
exp

(
−(Im(bj))

2

2γ2j

)

=

m∏
j=1

1

γ2j
exp

(
−(Re(bj))

2 + (Im(bj))
2

2γ2j

)
=

m∏
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1

γ2j
exp

(
−|bj |

2
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Therefore the likelihood depends on the squared magnitudes |bj |2 of the DFT coefficients.
Recall that the periodogram I(j/n) is defined as

I(j/n) :=
|bj |2

n
.

We can therefore rewrite the likelihood in terms of the periodogram as follows:

m∏
j=1

1

γ2j
exp

(
−nI(j/n)

2γ2j

)
. (2)

This likelihood depends on the data only through the periodogram ordinates I(j/n) for
j = 1, . . . ,m. Therefore the periodogram forms the sufficient statistic in this model. Under
(7), we have

I(j/n) =
1

n
|bj |2 =

1

n

(
(Re(bj))

2 + (Im(bj))
2
)
∼
γ2j
n
χ2
2.

The model can therefore be written directly in terms of the periodogram as

I(j/n)
ind∼

γ2j
n
χ2
2 for j = 1, . . . ,m.
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We can write the likelihood for the above model in terms of the periodogram and this would
be proportional to (8). Note also that χ2

2 distribution with two degrees of freedom actually
coincides with the Exponential distribution with λ parameter equal to 1/2.

Model (1) does not care so much about the individual DFT coefficients bj but only their
magnitude.

The negative log-likelihood corresponding to (8) is

m∑
j=1

(
2 log γj +

nI(j/n)

2γ2j

)
.

For optimization purposes we work with the logarithms of γj . Let αj = log γj . The negative
log-likelihood in terms of αj is

m∑
j=1

(
2αj +

nI(j/n)

2
e−2αj

)
.

If we directly minimize the above with respect to αj (without any additional regularization),
we get

αj = log

√
nI(j/n)

2
and γ2j = e2αj =

nI(j/n)

2
.

This basically means that the γ2j parameters fully interpolate the periodogram leading to
full overfitting. For more meaningful estimation, we need to add regularization. If we
assume smoothness of αj , we can add the penalty

∑m−1
j=2 ((αj+1 − αj) − (αj − αj−1))

2 or∑m−1
j=2 |(αj+1−αj)− (αj−αj−1)| to the negative log-likelihood. This leads to the estimators

α̂ridge
t (λ) and α̂lasso

t (λ) which are defined as the minimizers of

m∑
j=1

(
2αj +

nI(j/n)

2
e−2αj

)
+ λ

m−1∑
j=2

((αj+1 − αj)− (αj − αj−1))
2

and
n∑
t=1

(
2αj +

nI(j/n)

2
e−2αj

)
+ λ

m−1∑
j=2

|(αj+1 − αj)− (αj − αj−1)|

respectively. The penalties encourage smoothness in {αj}, leading to more stable and inter-
pretable estimates for {γ2j }.

2 Power Spectral Density

The sufficient statistic for Model 2 is the periodogram I(j/n). The mean of the periodogram
(according to the model) is given by 2γ2j /n. This quantity is known as the power of frequency
j/n:

f(j/n) = power of frequency j/n =
2γ2j
n
.

If we plot the points (j/n, f(j/n)) for j = 1, . . . ,m and join the neighboring points by lines,
we get a continuous function plot. This function is known as the power spectral density
and is defined on [0, 0.5].
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This definition of the power spectral density is not rigorous. For a rigorous treatment,
see any book on time series (e.g., Chapter 4 of Shumway and Stoffer; or the book “Spectral
Analysis for Univariate Time Series” by Percival and Walden).

After estimating the parameters γ21 , . . . , γ
2
m, it is customary to look at a plot of the esti-

mated power spectral density f(j/n) = 2γ2j /n (also known as the power spectrum).

3 Rewriting the Model in terms of yt

The model (1) is written in terms of the DFT bj . Because the original data can be written
in terms of the DFT, we can convert (1) into a specification for the original data yt. This
will lead us to the model representation that we already saw in Lecture 13.

The key to this is the following formula which writes the data in terms of the DFT.

yt =
1

n

n−1∑
j=0

bj exp

(
2πijt

n

)
for t = 0, 1, . . . , n− 1. (3)

We saw this formula previously in Lecture 8. It is known as the Inverse DFT formula.

The right hand side of (3) involves complex numbers (bj and exp(2πijt/n)). On the other
hand, the left hand is the data yt which is always real. Below we change the right hand side
in (3) to make it consist of only real terms.

We can rewrite the inverse DFT formula in the following way.

yt =
1

n

n−1∑
j=0

bj exp

(
2πijt

n

)

=
1

n

n−1∑
j=0

(Re(bj) + i Im(bj))

(
cos

(
2πjt

n

)
+ i sin

(
2πjt

n

))

=
1

n

n−1∑
j=0

(
Re(bj) cos

(
2πjt

n

)
− Im(bj) sin

(
2πjt

n

))
+ i

1

n

n−1∑
j=0

(
Re(bj) sin

(
2πjt

n

)
+ Im(bj) cos

(
2πjt

n

))
We can ignore the imaginary part above as the dataset consists of real numbers, and this
leads to

yt =
1

n

n−1∑
j=0

(
Re(bj) cos

(
2πjt

n

)
− Im(bj) sin

(
2πjt

n

))

=
b0
n

+
1

n

n−1∑
j=1

(
Re(bj) cos

(
2πjt

n

)
− Im(bj) sin

(
2πjt

n

))
We are assuming that n is odd and that m = (n − 1)/2. We split the sum above into
j = 1, . . . ,m and then j = m + 1, . . . , n − 1, and then use bn−j = b̄j or, equivalently,
Re(bn−j) = Re(bj) and Im(bn−j) = −Im(bj). This gives

yt =
b0
n

+
m∑
j=1

(
2Re(bj)

n
cos

(
2πjt

n

)
+
−2Im(bj)

n
sin

(
2πjt

n

))
.

where we also used cos(2π(n− j)t/n) = cos(2πjt/n) and sin(2π(n− j)t/n) = − sin(2πjt/n).
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In other words, when n is odd and m = (n− 1)/2, we have

yt = β0 +

m∑
j=1

(
β1j cos

2πjt

n
+ β2j sin

2πjt

n

)
(4)

where, for j = 1, . . . ,m,

β0 =
b0
n

β1j =
2Re(bj)

n
β2j = −2Im(bj)

n
(5)

The formula (4) holds for every dataset y0, . . . , yn−1. As a result, the model (1) is equivalent
to (4) with

β1j =
2Re(bj)

n
∼ N

(
0,

4

n2
γ2j

)
and β2j =

−2Re(bj)

n
∼ N

(
0,

4

n2
γ2j

)
.

The spectrum model therefore has the following two equivalent definitions:

• Definition 1: Re(b1), Im(b1), . . . ,Re(bm), Im(bm) are all independent with Re(bj), Im(bj)
i.i.d∼

N(0, γ2j ) for j = 1, . . . ,m.

• Definition 2:

yt = β0 +

m∑
j=1

(
β1j cos

2πjt

n
+ β2j sin

2πjt

n

)
(6)

with β11, β21, β12, β22, . . . , β1m, β2m all independent with

β1j , β2j
i.i.d∼ N(0, τ2j ).

These two definitions are equivalent because of (4) and (5). The two sets of parameters
γ21 , . . . , γ

2
m and τ21 , . . . , τ

2
m are related via:

4γ2j
n2

= τ2j ⇐⇒
2γj
n

= τj .

This is because

Re(bj) ∼ N(0, γ2j ) =⇒ 2Re(bj)

n
∼ N

(
0,

4γ2j
n2

)
.

The power spectrum is given by:

f(j/n) =
2γ2j
n

=
nτ2j
2

for 0 <
j

n
<

1

2
.

4 Two key properties of the Spectrum Model

Consider Definition 2 of the spectrum model. We focus on two key properties of {yt}. First,
as noted in Lecture 13, the variance of yt can be written as

var(yt) =

m∑
j=1

τ2j =
2

n

m∑
j=1

f(j/n) ≈ 2

∫ 1/2

0
f(ω)dω.

In other words, the variance of yt is closely approximated by twice the integral of the spectral
density f(ω) over the interval [0, 0.5].
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Next consider the covariance between yt and yt+h:

cov(yt, yt+h) =

m∑
j=1

τ2j cos

(
2πjh

n

)
=

2

n

m∑
j=1

f(j/n) cos

(
2πjh

n

)
≈ 2

∫ 1/2

0
f(ω) cos(2πωh)dω.

This shows that cov(yt, yt+h) can be nonzero, implying that yt and yt+h may be correlated.
Consequently, the spectrum model naturally allows for dependence in yt across different time
points, illustrating its ability to capture and represent temporal correlations.

5 The case of even n

We assumed that n is odd (and m = (n − 1)/2). If n is even, then 1/2 becomes a Fourier
frequency and bn/2 becomes real (because sin(πt) = 0 for all t). In this case, we can simply
avoid working with 1/2 by taking m = (n− 2)/2 and using the model:

Re(bj), Im(bj)
i.i.d∼ N(0, γ2j ) for j = 1, . . . ,m.

This will be equivalent to (6). Basically everything will stay the same as before (only
difference is that m = (n − 2)/2). Here we are essentially forcing γn/2 = 0. One can try to
also try to estimate γn/2 using bn/2 ∼ N(0, γ2n/2) (as was done in Lab 7) but this approach
is more complicated.
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