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1 Model from last class

In the last lecture, we studied the following model for a given time series yi, ..., Yn:
ye = Po+ P1(t — 1) + BaReLU(t — 2) + -+ - + Bp—1ReLU(t — (n — 1)) + & (1)

where, as always, € thd N(0,02). Here ReLU(t — ¢) = (t — ¢)4 equals 0 if ¢ < ¢ and equals
(t—c)ift >ec.

The unknown parameters in this model are Bgy, 81, ..., 8.—1 as well as o.

2 Two alternative representations of (1)

There are two alternative ways of writing (1). The first one is
Yt = Wt + € with ¢ i N(0, 02)
and
pe = Bo+ Bi(t — 1) + foReLU(t — 2) + - - - + fn1ReLU(t — (n — 1)). (2)

We also saw in the last lecture that the 8’s can be written in terms of u; as follows: 8By = u1,
B1 = p2 — p1, and
Be = (per — pue) — (e — pe—1) -

The second way of writing (1) is:

y=XpB+e
where
1 0 0 -0 Bo
1 1 0 0 051
1 1 .. .0 52
X =1. . . .« « | andp=
1 n-1 n—-2 - - -1 Brn_1




3 (Unregularized) MLE

As mentioned in the last lecture, the unregularized MLE of By, ..., 8,—1 is given by mini-
mizing the RSS:

n

Y (ye— o= Bt —1) = BaReLU(t = 2) — -+ = Bp1ReLU(t — (n — 1)))°

t=1

over all fy,...,B8,_1. This gives

Bo=w bBi=ve—v1 Bi= 1 —v)— (Y —yi1)

fort =2,...,n — 1. This will lead to the estimated trend function u; = y; for all ¢, and the
smallest RSS value is zero.

These unregularized estimates will overfit the data, and will not produce a trend estimate
that is simpler than the observed data.

4 Regularized Estimates

We discussed two estimates of fy, ..., 3,—1 based on the idea of regularization. The first is
the ridge estimate 5"98°()\) defined as the minimizer of:

(ye — Bo — Bi(t — 1) — BeReLU(t — 2) — - — Bu_1ReLU(t — (n — 1)))? -
1

+A (B3 B+ +Br).
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The second is the LASSO estimate Blasso()\) given by the minimizer of:

(ye — Bo — Bi(t — 1) — BoReLU(t — 2) — - - — Bo_1ReLU(t — (n — 1)))? @
1

+ A (|82 + B3| + -+ |Bn-1]) -
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A denotes a parameter which can be tuned to change the behavior of 5198¢(\) and 8s50()).
When A = 0, both 31dge(\) and (25%°()\) coincide with the unregularized least squares
estimator. When X is very large, both 5192°(\) and £'855°()\) coincide with the linear regres-
sion estimator (i.e., the first two components of 3798¢(\) and §%°()) coincide with linear
regression while the last n — 2 components are simply set to zero).

Based on the alternative representations of Section 2, we can rewrite the optimization
objectives (9) and (10) as

n n—1
D (e —m)® + XY ((err = ) = (e = 1)) (5)

=1 =2

and "
D e =)+ A N (perr — pe) = (e — pe—1))| (6)

=1 =2



We denote the minimizer of (5) by ﬂfdge()\) and the minimizer of (6) by 2%°(\). The
relation between fif %°(\) and 498°()\) is given by

ﬂiidge()\) _ Brldge( ) + Brldge + Z Brldge ReLU(t _ ])
Similarly the relation between /if°(\) and 4198°()\) is given by

A (N) = BESO(N) + B (A) (- 1) + D B°(A)ReLU(t — j).
=2

The estimator urldge()\) is actually known by the name Hodrick-Prescott filter in the econo-
metrics literature (see e.g., https://en.wikipedia.org/wiki/Hodrick\OT1\textendashPrescott_
filter), and it is closely related to the cubic spline smoother (see e.g., https://en.
wikipedia.org/wiki/Smoothing_spline).

The estimator %°(\) is known by the name ¢ trend filter (see https://stanford.edu/
~boyd/papers/11_trend_filter.html).

Both the objective functions (5) and (6) ensure good fit to the data (because of the term
Do (ye — pe)?) while also ensuring that neighboring slopes i1 — pr and py — pp—q are
close to each other (this is because of the terms A ;7 Y (g1 — pe) — (e — pe—1))? and

A Y (pues1 — 1) — (pe — pe—1)]). Closeness of neighboring slopes i1 — iy and pig — juy—1
gives a smooth appearance to {y;}. These can therefore be seen as methods for trying to fit

a smooth trend function p; to the observed time series y;.

5 Ridge vs LASSO

The LASSO estimator 525°()\) is usually sparse which means that most of S255°()), .. ., glasso()\)
are exactly (up to numerical precision) equal to zero. This implies that /1}25°°(\) is piecewise
linear. On the other hand, £798¢()\) will not be sparse in that all the terms Brldge( A, ... ,,Brldge( A)
will be nonzero (even though they may be small). This gives a smooth appearance to

Bridge ( )\) ]
Some insight into the tendency of the LASSO regularization to yield exact zeroes in con-

trast to ridge regularization can be gained from the following two simple facts.

Fact 5.1 (Simple Ridge). Suppose y is a real number and X\ > 0. Then the minimizer of

FB)=(y—B)* + A6

is given by

Proof. We just need to differentiate f and set the derivative to zero:

FB)=2B-y)+2A8=0 = g:l%.
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Fact 5.2 (Simple LASSO). Suppose y is a real number and A > 0. Then the minimizer of
FB) = (y—B)*+Als|

is given by
y—A/2 ify>A/2
B=Qy+A2 ify<—\/2
0 if —A2<y<\/2.

Proof. The derivative of f is given by:

s J2B=y)+ A B >0
f(ﬁ)_{Q(ﬁ—y)—A if 8 <0.

At B = 0, the function |3| is not differentiable. We now need to set the derivative to zero.
Setting to zero the expression for f/(53) for 5 > 0, we get

2-y)+A=0 = ﬁ:y—%-

Since this expression for f/(3) is only valid when 8 > 0, we need to assume that y > \/2.

Similarly setting to zero the expression for f’(8) when 8 < 0, we get
A
28-y)-A=0 = f=y+
which is valid when y + /2 < 0 or y < —)\/2.

The above calculations show that B equals ¥y — A/2 when y > A\/2, and that B equals
y+ A/2 when y < —\/2. In the intermediate range —\/2 <y < \/2, check that f/(8) <0
for 8 < 0 and f/(8) > 0 for 8 > 0. This means that f is decreasing on (—o00,0) and then
increasing on (0, 00) which implies that the minimum of f has to be achieved at 0. O

From these facts, it is clear that when y # 0, the ridge minimizer will never be zero, while
the lasso minimizer will equal exactly zero for all y-values in the range [—\/2,\/2]. The
LASSO penalty therefore has a tendency to produce exact zeros unlike the ridge penalty.

6 Cross-validation for selecting \

The behavior of 47198¢()\) and 3'255°(\) depend crucially on the choice of the tuning parameter
A. One can visually tune X in order to obtain /l?dge()\), f11355°(\) that is simple (not too wiggly)
and which fits the data well (for example, one can start with A = 1 and either increase or
decrease A by factors of 10 until a visually appealing trend estimate is obtained). Another

popular approach is to use cross-validation.

The basic idea behind cross validation is the following. First split the total set of time
points T'= {1,...,n} into two disjoint groups Tirain and Tiest. Generally Tipain will be much
larger than Tiest (€.8., Tirain Will contain about 80% of the data and Tiegy will contain about
20% of the data). For this split, fit the model to the time indices in Tiyain and obtain ﬂﬁjﬁ? (N
as the minimizer of

> (i —Bo—pi(t—1) = BReLU(t — 2) — -+ — B,_1ReLU(t — (n — 1)))?
t€T rain (7)
AP+ B+ + BE)



id L.
and 55;1%? (M) as the minimizer of

> (= Bo—Pi(t—1) = BoReLU(t — 2) — -+ — B 1ReLU(t — (n — 1)))?

tET rain (8)
+ A (82| + B3] + -+ [Bn-1])

Using these estimates, predict the values of y; for ¢t € Tiegt:

BN = Brase s\ +Bhass | (A (t—1)+Bese  (WReLU(t—2)++ - +Bese | (WReLU(t—(n—1))

train,0 train,1 train,2 train,n—1

and
GIESO(N) = Blasse (N +BEse (A (E—1)+Bs0 o (NReLU(t=2)+- - +4550  (MReLU(t—(n—1))

The discrepancy between the actual values of y; and the predicted values can be calculated
as:

. 2 2
Test-Error'&°()) = Z (yt gridee (A)) and Test-Error®°() Z (yt g0 (A ))
tE€ T est t€T est

This test error is for a single train-test split. One can consider multiple train-test splits and
add the test errors to obtain one measure of the test error for each value of A:

AlISplit-Test-Errorid8¢(\) = Z Test-Errortide¢(\)
all splits

and
AllSplit—Test—ErrorlaSSO()\) = Z Test—ErrorlaSSO( )

all splits

This test error over all splits would be calculated for a set of candidate A values (e.g., A = 10°
for a = —5,—4,...,4,5) and then choose the value of A which gives the smallest test error
(this would give one choice of A for ridge, and one choice of A for lasso).

One common choice of selecting the splits is the following:
1. Split 1: Tieg is {1,6,11,...} and Tipain is all other ¢.
2. Split 2: Tiest is {2,7,12,...} and Tipain is all other ¢.
3. Split 3: Tiest is {3,8,13, ...} and Tiain is all other ¢.
4. Split 4: Ties is {4,9,14, ...} and Tiain is all other ¢.
5. Split 5: Tiest is {5,10,15,...} and Tipain is all other ¢.

This method gives 5 different train-test splits, commonly known as 5-fold cross-validation.
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