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1 Model from last class

In the last lecture, we studied the following model for a given time series y1, . . . , yn:

yt = β0 + β1(t− 1) + β2ReLU(t− 2) + · · ·+ βn−1ReLU(t− (n− 1)) + εt (1)

where, as always, εt
i.i.d∼ N(0, σ2). Here ReLU(t − c) = (t − c)+ equals 0 if t ≤ c and equals

(t− c) if t > c.

The unknown parameters in this model are β0, β1, . . . , βn−1 as well as σ.

2 Two alternative representations of (1)

There are two alternative ways of writing (1). The first one is

yt = µt + εt with εt
i.i.d∼ N(0, σ2)

and
µt = β0 + β1(t− 1) + β2ReLU(t− 2) + · · ·+ βn−1ReLU(t− (n− 1)). (2)

We also saw in the last lecture that the β’s can be written in terms of µt as follows: β0 = µ1,
β1 = µ2 − µ1, and

βt = (µt+1 − µt)− (µt − µt−1) .

The second way of writing (1) is:
y = Xβ + ε

where

X =



1 0 0 · · · 0
1 1 0 · · · 0
1 2 1 · · · 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 n− 1 n− 2 · · · 1


and β =



β0
β1
β2
·
·
·

βn−1


.
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3 (Unregularized) MLE

As mentioned in the last lecture, the unregularized MLE of β0, . . . , βn−1 is given by mini-
mizing the RSS:

n∑
t=1

(yt − β0 − β1(t− 1)− β2ReLU(t− 2)− · · · − βn−1ReLU(t− (n− 1)))2

over all β0, . . . , βn−1. This gives

β̂0 = y1 β̂1 = y2 − y1 β̂t = (yt+1 − yt)− (yt − yt−1)

for t = 2, . . . , n− 1. This will lead to the estimated trend function µt = yt for all t, and the
smallest RSS value is zero.

These unregularized estimates will overfit the data, and will not produce a trend estimate
that is simpler than the observed data.

4 Regularized Estimates

We discussed two estimates of β0, . . . , βn−1 based on the idea of regularization. The first is
the ridge estimate β̂ridge(λ) defined as the minimizer of:

n∑
t=1

(yt − β0 − β1(t− 1)− β2ReLU(t− 2)− · · · − βn−1ReLU(t− (n− 1)))2

+ λ
(
β22 + β23 + · · ·+ β2n−1

)
.

(3)

The second is the LASSO estimate β̂lasso(λ) given by the minimizer of:

n∑
t=1

(yt − β0 − β1(t− 1)− β2ReLU(t− 2)− · · · − βn−1ReLU(t− (n− 1)))2

+ λ (|β2|+ |β3|+ · · ·+ |βn−1|) .
(4)

λ denotes a parameter which can be tuned to change the behavior of β̂ridge(λ) and β̂lasso(λ).
When λ = 0, both β̂ridge(λ) and β̂lasso(λ) coincide with the unregularized least squares
estimator. When λ is very large, both β̂ridge(λ) and β̂lasso(λ) coincide with the linear regres-
sion estimator (i.e., the first two components of β̂ridge(λ) and β̂lasso(λ) coincide with linear
regression while the last n− 2 components are simply set to zero).

Based on the alternative representations of Section 2, we can rewrite the optimization
objectives (9) and (10) as

n∑
t=1

(yt − µt)2 + λ
n−1∑
t=2

((µt+1 − µt)− (µt − µt−1))2 (5)

and
n∑

t=1

(yt − µt)2 + λ

n−1∑
t=2

|(µt+1 − µt)− (µt − µt−1)| (6)
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We denote the minimizer of (5) by µ̂ridget (λ) and the minimizer of (6) by µ̂lassot (λ). The

relation between µ̂ridget (λ) and β̂ridge(λ) is given by

µ̂ridget (λ) = β̂ridge0 (λ) + β̂ridge1 (λ)(t− 1) +

n−1∑
j=2

β̂ridgej (λ)ReLU(t− j).

Similarly the relation between µ̂ridget (λ) and β̂ridge(λ) is given by

µ̂lassot (λ) = β̂lasso0 (λ) + β̂lasso1 (λ)(t− 1) +

n−1∑
j=2

β̂lassoj (λ)ReLU(t− j).

The estimator µ̂ridget (λ) is actually known by the name Hodrick-Prescott filter in the econo-
metrics literature (see e.g., https://en.wikipedia.org/wiki/Hodrick\OT1\textendashPrescott_
filter), and it is closely related to the cubic spline smoother (see e.g., https://en.

wikipedia.org/wiki/Smoothing_spline).

The estimator µ̂lassot (λ) is known by the name `1 trend filter (see https://stanford.edu/

~boyd/papers/l1_trend_filter.html).

Both the objective functions (5) and (6) ensure good fit to the data (because of the term∑n
t=1(yt − µt)

2) while also ensuring that neighboring slopes µt+1 − µt and µt − µt−1 are
close to each other (this is because of the terms λ

∑n−1
t=2 ((µt+1 − µt)− (µt − µt−1))2 and

λ
∑n−1

t=2 |(µt+1 − µt)− (µt − µt−1)|). Closeness of neighboring slopes µt+1−µt and µt−µt−1
gives a smooth appearance to {µt}. These can therefore be seen as methods for trying to fit
a smooth trend function µt to the observed time series yt.

5 Ridge vs LASSO

The LASSO estimator β̂lasso(λ) is usually sparse which means that most of β̂lasso2 (λ), . . . , β̂lasson−1 (λ)
are exactly (up to numerical precision) equal to zero. This implies that µ̂lassot (λ) is piecewise

linear. On the other hand, β̂ridge(λ) will not be sparse in that all the terms β̂ridge2 (λ), . . . , β̂ridgen−1 (λ)
will be nonzero (even though they may be small). This gives a smooth appearance to
β̂ridge(λ).

Some insight into the tendency of the LASSO regularization to yield exact zeroes in con-
trast to ridge regularization can be gained from the following two simple facts.

Fact 5.1 (Simple Ridge). Suppose y is a real number and λ > 0. Then the minimizer of

f(β) = (y − β)2 + λβ2

is given by

β̂ =
y

1 + λ
.

Proof. We just need to differentiate f and set the derivative to zero:

f ′(β) = 2(β − y) + 2λβ = 0 =⇒ β =
y

1 + λ
.
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Fact 5.2 (Simple LASSO). Suppose y is a real number and λ > 0. Then the minimizer of

f(β) = (y − β)2 + λ|β|

is given by

β̂ =


y − λ/2 if y > λ/2

y + λ/2 if y < −λ/2
0 if − λ/2 ≤ y ≤ λ/2.

Proof. The derivative of f is given by:

f ′(β) =

{
2(β − y) + λ if β > 0

2(β − y)− λ if β < 0.

At β = 0, the function |β| is not differentiable. We now need to set the derivative to zero.
Setting to zero the expression for f ′(β) for β > 0, we get

2(β − y) + λ = 0 =⇒ β = y − λ

2
.

Since this expression for f ′(β) is only valid when β > 0, we need to assume that y > λ/2.

Similarly setting to zero the expression for f ′(β) when β < 0, we get

2(β − y)− λ = 0 =⇒ β = y +
λ

2

which is valid when y + λ/2 < 0 or y < −λ/2.

The above calculations show that β̂ equals y − λ/2 when y > λ/2, and that β̂ equals
y + λ/2 when y < −λ/2. In the intermediate range −λ/2 ≤ y ≤ λ/2, check that f ′(β) < 0
for β < 0 and f ′(β) > 0 for β > 0. This means that f is decreasing on (−∞, 0) and then
increasing on (0,∞) which implies that the minimum of f has to be achieved at 0.

From these facts, it is clear that when y 6= 0, the ridge minimizer will never be zero, while
the lasso minimizer will equal exactly zero for all y-values in the range [−λ/2, λ/2]. The
LASSO penalty therefore has a tendency to produce exact zeros unlike the ridge penalty.

6 Cross-validation for selecting λ

The behavior of β̂ridge(λ) and β̂lasso(λ) depend crucially on the choice of the tuning parameter

λ. One can visually tune λ in order to obtain µ̂ridget (λ), µ̂lassot (λ) that is simple (not too wiggly)
and which fits the data well (for example, one can start with λ = 1 and either increase or
decrease λ by factors of 10 until a visually appealing trend estimate is obtained). Another
popular approach is to use cross-validation.

The basic idea behind cross validation is the following. First split the total set of time
points T = {1, . . . , n} into two disjoint groups Ttrain and Ttest. Generally Ttrain will be much
larger than Ttest (e.g., Ttrain will contain about 80% of the data and Ttest will contain about

20% of the data). For this split, fit the model to the time indices in Ttrain and obtain β̂ridgetrain (λ)
as the minimizer of∑

t∈Ttrain

(yt − β0 − β1(t− 1)− β2ReLU(t− 2)− · · · − βn−1ReLU(t− (n− 1)))2

+ λ
(
β22 + β23 + · · ·+ β2n−1

) (7)
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and β̂ridgetrain (λ) as the minimizer of∑
t∈Ttrain

(yt − β0 − β1(t− 1)− β2ReLU(t− 2)− · · · − βn−1ReLU(t− (n− 1)))2

+ λ (|β2|+ |β3|+ · · ·+ |βn−1|)
(8)

Using these estimates, predict the values of yt for t ∈ Ttest:

ŷridget (λ) = β̂ridgetrain,0(λ)+β̂ridgetrain,1(λ)(t−1)+β̂ridgetrain,2(λ)ReLU(t−2)+· · ·+β̂ridgetrain,n−1(λ)ReLU(t−(n−1))

and

ŷlassot (λ) = β̂lassotrain,0(λ)+β̂lassotrain,1(λ)(t−1)+β̂lassotrain,2(λ)ReLU(t−2)+· · ·+β̂lassotrain,n−1(λ)ReLU(t−(n−1))

The discrepancy between the actual values of yt and the predicted values can be calculated
as:

Test-Errorridge(λ) =
∑

t∈Ttest

(
yt − ŷridget (λ)

)2
and Test-Errorlasso(λ) =

∑
t∈Ttest

(
yt − ŷlassot (λ)

)2
This test error is for a single train-test split. One can consider multiple train-test splits and
add the test errors to obtain one measure of the test error for each value of λ:

AllSplit-Test-Errorridge(λ) =
∑

all splits

Test-Errorridge(λ)

and
AllSplit-Test-Errorlasso(λ) =

∑
all splits

Test-Errorlasso(λ)

This test error over all splits would be calculated for a set of candidate λ values (e.g., λ = 10a

for a = −5,−4, . . . , 4, 5) and then choose the value of λ which gives the smallest test error
(this would give one choice of λ for ridge, and one choice of λ for lasso).

One common choice of selecting the splits is the following:

1. Split 1: Ttest is {1, 6, 11, . . . } and Ttrain is all other t.

2. Split 2: Ttest is {2, 7, 12, . . . } and Ttrain is all other t.

3. Split 3: Ttest is {3, 8, 13, . . . } and Ttrain is all other t.

4. Split 4: Ttest is {4, 9, 14, . . . } and Ttrain is all other t.

5. Split 5: Ttest is {5, 10, 15, . . . } and Ttrain is all other t.

This method gives 5 different train-test splits, commonly known as 5-fold cross-validation.
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