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1 AR models: estimation, inference and prediction

The AR(p) model is given by:

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + εt (1)

The unknown parameters are φ0, φ1, . . . , φp as well as σ (σ is the standard deviation of εt).
These need to be estimated from the observed data y1, . . . , yn.

The likelihood is (below θ denotes the vector consisting of all the parameters φ0, . . . , φp
and σ):

fy1,...,yn|θ(y1, . . . , yn) = fyp+1,...,yn|y1,...,yp,θ(yp+1, . . . , yn)fy1,...,yp|θ(y1, . . . , yp).

The conditional likelihood is calculated as

fyp+1,...,yn|y1,...,yp,θ(yp+1, . . . , yn)

=
n∏

t=p+1

fyt|yt−1,...,y1,θ(yt)

=
n∏

t=p+1

fφ0+φ1yt−1+···+φpyt−p+εt|yt−1,...,y1,θ(yt)

=
n∏

t=p+1

fεt|yt−1,...,y1,θ(yt − φ0 − φ1yt−1 − · · · − φpyt−p).

In order to proceed further, we shall make the following assumption:

εt | yt−1, . . . , y1 ∼ N(0, σ2) for each t = p+ 1, . . . , n. (2)

This is equivalent to assuming that εt ∼ N(0, σ2) and that εt is independent of y1, . . . , yt−1.
With (2), we get

fyp+1,...,yn|y1,...,yp,θ(yp+1, . . . , yn)

=
n∏

t=p+1

1√
2πσ

exp

(
−(yt − φ0 − φ1yt−1 − · · · − φpyt−p)2

2σ2

)

=

(
1√
2πσ

)n−p
exp

− 1

2σ2

n∑
t=p+1

(yt − φ0 − φ1yt−1 − · · · − φpyt−p)2
 .
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Observe that, in order to write the above formula, we only used the model equation (1) for
t = p+ 1, . . . , n.

The conditional joint density fyp+1,...,yn|y1,...,yp,θ(yp+1, . . . , yn) is called the conditional
likelihood of the AR(p) model. The full likelihood is

fy1,...,yn|θ(y1, . . . , yn)

= fyp+1,...,yn|y1,...,yp,θ(yp+1, . . . , yn)fy1,...,yp|θ(y1, . . . , yp)

=

(
1√
2πσ

)n−p
exp

− 1

2σ2

n∑
t=p+1

(yt − φ0 − φ1yt−1 − · · · − φpyt−p)2
 fy1,...,yp|θ(y1, . . . , yp).

If we assume that fy1,...,yp|θ(y1, . . . , yp) does not depend on θ, then maximizing the full
likelihood is equivalent to maximizing the conditional likelihood.

If we want to derive fy1,...,yp|θ(y1, . . . , yp) in a more principled way, then we have to use
the model equation (1) for smaller values of t (i.e., t = p, p − 1, p − 2, . . . , 0,−1, . . . ). This
makes the analysis complicated and is not really worth it. It also only works under some
“stationarity” assumptions on φ0, . . . , φp. It is much simpler working with the conditional
likelihood.

Using the matrix notation:

Y(n−p)×1 =



yp+1

yp+2

·
·
·
yn

 X(n−p)×(p+1) =



1 yp yp−1 . . . y1
1 yp+1 yp+2 . . . y2
· · · . . . ·
· · · . . . ·
· · · . . . ·
1 yn−1 yn−2 . . . yn−p

 β(p+1)×1 =



φ0
φ1
·
·
·
φp

 ,

the conditional likelihood (which is also proportional to the full likelihood under the assump-
tion that fy1,...,yp|θ(y1, . . . , yp) does not depend on θ) becomes:

likelihood ∝
(

1√
2πσ

)n−p
exp

(
−‖Y −Xβ‖

2

2σ2

)
. (3)

This likelihood is the same as the likelihood in linear regression with n− p observations. We
can therefore infer the parameters φ0, . . . , φp and σ as in usual linear regression with the
prior:

φ0, φ1, . . . , φp, log σ
i.i.d∼ unif(−C,C).

This will allow us to write down the joint posterior of (β, σ). Integrating over σ leads to the
posterior of β alone. As in Lecture 4, this leads to

β | data ∼ tn−2p−1,p+1

(
β̂, σ̂2(XTX)−1

)
where

β̂ := (X ′X)−1X ′Y and σ̂ =

√
‖Y −Xβ̂‖2
n− 2p− 1

.

Note that the degrees of freedom of the t-distribution above is n− 2p− 1 as the number of
observations equals n− p and the number of components of β is p+ 1. If inference for σ is
desired, one can use:

‖Y −Xβ̂‖2

σ2
| data ∼ χ2

n−2p−1.
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Note that Bayesian inference for AR models is identical to Bayesian inference for linear
regression models because the likelihood (3) is the same as in the usual linear model (with
n− p observations). Bayesian inference only cares about the likelihood.

Frequentist inference for the AR(p) model is based on the MLE which is given by β̂ and

σ̂MLE =

√
‖Y −Xβ̂‖2

n− p
.

To obtain frequentist confidence intervals for the parameters φi, one needs to find the distri-
bution of β̂. Here the analysis is quite different from that used in linear regression (see, for
example, Section 3.5 of the book by Shumway and Stoffer titled Time Series Analysis and
its applications (Fourth Edition)). The results turn out to be quite close to those obtained
by the Bayesian method.

Unlike Bayesian inference, frequentist inference for the AR model is not identical to fre-
quentist inference for the usual linear regression model. For example, one does not use
t-distributions for inferring the φ parameters in AR(p) models. Instead, one uses normal dis-
tributions (e.g., z-scores as opposed to t-scores) which are justified by asymptotic arguments
that are different from and more complicated than those used for linear regression.

2 Predictions given by AR(p) models

One important goal of time series analysis is prediction also known as forecasting: given the
observed data y1, . . . , yn, what can we say about the future observations yn+1, . . . , yn+k for
some k ≥ 1? In the Bayesian context, prediction is done via the joint probability distribution
of

yn+1, . . . , yn+k

conditional on the observed data y1, . . . , yn. For example, point predictions can be obtained
by the conditional expectations:

E (yn+1 | y1, . . . , yn) , . . . ,E (yn+k | y1, . . . , yn) .

Uncertainty quantification for the predictions can be done via the conditional variances:

var (yn+1 | y1, . . . , yn) , . . . , var (yn+k | y1, . . . , yn) .

Let us focus on point predictions using conditional expectations for now. We shall deal with
uncertainty quantification for the predictions in the next class. The conditional expectations
can be written as

E (yn+i | y1, . . . , yn) =

∫
E (yn+i | y1, . . . , yn, θ) fθ|y1,...,yn(θ)dθ (4)

for i = 1, . . . , n.

Let us first calculate
ŷn+i(θ) := E (yn+i | y1, . . . , yn, θ)

for fixed parameters θ. These can be calculated recursively for i = 1, 2, . . . as follows.
Assuming the validity of the model equation (1) also for t > n, we get

ŷn+i(θ) = E (yn+i | y1, . . . , yn, θ)
= E (φ0 + φ1yn+i−1 + φ2yn+i−2 + · · ·+ φpyn+i−p | y1, . . . , yn, θ)
= φ0 + φ1ŷn+i−1(θ) + φ2ŷn+i−2(θ) + · · ·+ φpŷn+i−p(θ).
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We thus have the following recursion for the predictions ŷn+i(θ):

ŷn+i(θ) = φ0 + φ1ŷn+i−1(θ) + φ2ŷn+i−2(θ) + · · ·+ φpŷn+i−p(θ) for i = 1, 2, . . . . (5)

If we initialize this recursion with

ŷj(θ) = yj for j = n, n− 1, . . . , n+ 1− p, (6)

then (5) can be evaluated in sequence for i = 1, 2, . . . to calculate ŷn+i(θ) for all i ≥ 1.

Let us get back to the conditional expectation (4):

E(yn+i | y1, . . . , yn) =

∫
ŷn+i(θ)fθ|y1,...,yn(θ)dθ (7)

To compute the integral above, we can do one of two things:

1. We can first generate posterior samples θ(1), . . . , θ(N) from the posterior fθ|y1,...,yn(θ).
Then (7) is approximated as

E(yn+i | y1, . . . , yn) ≈ 1

N

N∑
`=1

ŷn+i(θ
(`)).

2. For a simpler approach, we can use the fact that the posterior density fθ|y1,...,yn(θ) is

usually highly concentrated around the point estimate θ̂ = (β̂, σ̂). We can then ignore
the small uncertainty of θ around θ̂ to write

E(yn+i | y1, . . . , yn) =

∫
ŷn+i(θ)fθ|y1,...,yn(θ)dθ ≈ ŷn+i(θ̂).

This second method avoids posterior sampling is faster and simpler.

3 Prediction Uncertainty

We shall next discuss how to provide uncertainty quantification for predictions given by the
AR(p) model. This can be done via the variance of the future observations given the data.
Specifically by

var (yn+i | y1, . . . , yn) for i = 1, 2, . . . .

and the corresponding standard deviations. We approximate these conditional variances as
(below we write “data” for y1, . . . , yn)

var (yn+i | data) = E (var (yn+i | θ,data) | data) + var (E (yn+i | θ,data) | data)

The second term above is generally small. This is because E (yn+i | θ,data) is a function of
θ and then we take the expectation of θ with respect to the posterior distribution. Because
the posterior distribution is usually quite concentrated, the variance will be small. We shall
thus ignore the second term and write

var (yn+i | data) ≈ E (var (yn+i | θ,data) | data)

To calculate this, the main task is to compute

Vi(θ) := var (yn+i | θ,data)

It turns that it is difficult to directly setup a recursion for Vi(θ). Instead, we will get the
recursion by working with the conditional covariance matrices of Yn+1, . . . , Yn+k (given
θ and the data) for k = 1, 2, . . . . Let us first review some basic formulae for covariance
matrices.
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3.1 Covariance Matrices

A finite number of random variables can be viewed together as a random vector. More pre-
cisely, a random vector is a vector whose entries are random variables. Let Y = (Y1, . . . , Yn)T

be an n× 1 random vector. Its Expectation EY is defined as a vector whose ith entry is the
expectation of Yi i.e., EY = (EY1,EY2, . . . ,EYn)T . The covariance matrix of Y , denoted by
Cov(Y ), is an n × n matrix whose (i, j)th entry is the covariance between Yi and Yj . Two
important but easy facts about Cov(Y ) are:

1. The diagonal entries of Cov(Y ) are the variances of Y1, . . . , Yn. More specifically the
(i, i)th entry of the matrix Cov(Y ) equals var(Yi).

2. Cov(Y ) is a symmetric matrix i.e., the (i, j)th entry of Cov(Y ) equals the (j, i) entry.
This follows because Cov(Yi, Yj) = Cov(Yj , Yi).

The following formulae are very important:

1. E(AY +c) = AE(Y )+c for every deterministic matrix A and every deterministic vector
c.

2. Cov(AY + c) = ACov(Y )AT for every deterministic matrix A and every deterministic
vector c.

As a consequence of the second formula above, we get

var(aTY ) = aTCov(Y )a =
∑
i,j

aiajCov(Yi, Yj) for every p× 1 vector a.

Given two random vectors Y (p× 1) and W (q × 1), we use Cov(Y,W ) to denote the p× q
matrix whose (i, j)th entry equals the covariance Cov(Yi,Wj) between Yi and Wj . With this
definition, the previous notion of Cov(Y ) equals simply Cov(Y, Y ). It can be checked that

Cov(AY + c,BW + d) = ACov(Y,W )BT .

3.2 Covariance Recursion for Future Variables in AR(p)

We shall set up a recursion for the covariance matrices:

Γk(θ) := Cov



yn+1

·
·
·

yn+k

 | θ,data


The (i, j)th entry of Γk(θ) is

Cov (yn+i, yn+j | y1, . . . , yn, θ) .

We shall see how to do this in the next lecture.

3.3 Optional Additional Reading for Today

1. For more on fitting AR(p) models to data, see Section 3.5 of the book by Shumway
and Stoffer titled Time Series Analysis and its applications (Fourth Edition).

2. For more on prediction with AR models, see Section 3.4 of the Shumway-Stoffer book.
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