
STAT 153 & 248 - Time Series
Lecture Eight

Spring 2025, UC Berkeley

Aditya Guntuboyina

February 13, 2025

1 DFT

Given a time series dataset y0, y1, . . . , yn−1 of length n, its Discrete Fourier Transform (DFT)
is given by b0, b1, . . . , bn−1 where

bj :=
n−1∑
t=0

yt exp

(
−2πijt

n

)
for j = 0, 1, . . . , n− 1. (1)

An alternative expression for bj is:

bj =

[
n−1∑
t=0

yt cos

(
2πjt

n

)]
− i

[
n−1∑
t=0

yt sin

(
2πjt

n

)]
. (2)

So bj is a complex number with real part
∑

t yt cos(2πjt/n) and imaginary part−
∑

t yt sin(2πjt/n).
The following are useful facts to know about the DFT.

1. b0 is always equal to y0 + · · ·+ yn−1. To see this, just plug in j = 0 in (1) or (2).

2. For each j = 1, . . . , n− 1, the DFT term bn−j equals the complex conjugate of bj :

bn−j = b̄j . (3)

The reason for the above is

bn−j =
∑
t

yt exp

(
−2πi(n− j)t

n

)
=
∑
t

yt exp

(
2πijt

n

)
exp (−2πit) = b̄j ,

where, in the above, we used that exp(−2πit) = 1 (because t is an integer) and that

exp
(
2πijt
n

)
is the complex conjugate of exp

(
−2πijt

n

)
. Note that, for the above argu-

ment, it is crucial that y0, . . . , yn−1 are real. If some of y0, . . . , yn−1 are complex, the
relation (3) is no longer true.

Because of (3), the DFT terms for later indices j are determined as the complex conjugates
for the DFT indices for earlier indices. For example, when n = 11, the DFT can be written
as:

b0, b1, b2, b3, b4, b5, b̄5, b̄4, b̄3, b̄2, b̄1,

and, for n = 12, it is
b0, b1, b2, b3, b4, b5, b6 = b̄6, b̄5, b̄4, b̄3, b̄2, b̄1.
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Note that when n = 12, the term b6 is necessarily real because b6 = b̄6. The data and their
DFT provide equivalent information. When n = 11, the data consists of 11 real numbers
while the DFT consists of one real number (b0) and 5 complex numbers. On the other
hand, when n = 12, the data consists of 12 real numbers while the DFT consists of two real
numbers (b0 and b6) and 5 complex numbers.

The formula (1) tells how to compute the DFT {bj} from the data {yt}. It is also possible
to write a formula for recovering the data {yt} from its DFT {bj}. This formula is given by:

yt =
1

n

n−1∑
j=0

bj exp

(
2πijt

n

)
. (4)

Note that the two formulae (1) and (4) are quite similar; the differences being in the sign
of the exponent in the complex exponential and the presence of the factor 1/n in (4). (1) is
known as the DFT formula while (4) is known as the Inverse DFT formula.

Formula (4) becomes

y =
1

n

n−1∑
j=0

bju
j (5)

in vector form (note y = (y0, y1, . . . , yn−1)
T ) and this encapsulates the idea that y can be

written as a linear combination of the basis sinusoids u0, u1, . . . , un−1.

The most important fact about the DFT is that it can be computed efficiently (in time
O(n log n)) using an algorithm called FFT (Fast Fourier Transform). Note that a naive
computation of b0, . . . , bn−1 directly using the formula (1) will take O(n2) time. The FFT is
a divide-and-conquer algorithm that efficiently computes the DFT by using clever recursions
(see e.g., https://en.wikipedia.org/wiki/Fast_Fourier_transform for details).

2 The Periodogram

The Periodogram is a way of visualizing the DFT. The DFT consists of complex numbers
so it is difficult to visualize it directly. The common visualization consists of looking at the
squared absolute values of the DFT. More precisely, the periodogram is defined by

I

(
j

n

)
:=
|bj |2

n
for 0 <

j

n
≤ 1

2
.

One visualizes the size of the DFT terms by plotting the periodogram. Note that j = 0 is
not plotted as b0 is simply the sum of the data values and does not provide any information
on the sinusoidal components present in the data.

Because

bj =

n−1∑
t=0

yt exp

(
−2πijt

n

)
=

n−1∑
t=0

yt cos
2πjt

n
− i

n−1∑
t=0

yt sin
2πjt

n
,

we can write the periodogram as:

I

(
j

n

)
=

1

n

(n−1∑
t=0

yt cos
2πjt

n

)2

+

(
n−1∑
t=0

yt sin
2πjt

n

)2
 for 0 <

j

n
≤ 1

2
. (6)
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3 Utility of the Periodogram

The periodogram is a very commonly used tool for time series data analysis. It has the
following two main uses:

1. If we want to fit the single sinusoidal model

yt = β0 + β1 cos(2πft) + β2 sin(2πft) + εt (7)

to the data, then the periodogram allows efficient computation of RSS(f) for Fourier
frequencies f ∈ (0, 0.5) via the following formula:

RSS(f) =

n−1∑
t=0

(yt − ȳ)2 − 2I(f).

For data sets with large n, directly computing RSS(f) over a fine grid might be
computationally infeasible. In such cases, one can restrict to Fourier frequencies and
compute RSS(f) using the above formula (note that, due to the FFT algorithm, I(f)
for Fourier frequencies f can be computed very efficiently).

Remember also that RSS(f) is key to doing inference for f in the model (7). The
MLE of f is obtained by minimizing RSS(f). The Bayesian posterior is given by:

∝
(

1

RSS(f)

)(n−3)/2

|XT
f Xf |−1/2I{0 < f < 1/2}.

When f is a Fourier frequency lying in (0, 1/2), we saw in Lecture 6 that

XT
f Xf =

n 0 0
0 n/2 0
0 0 n/2

 and (XT
f Xf )−1 =

1/n 0 0
0 2/n 0
0 0 2/n


so that |XT

f Xf | = n3/8. Importantly, this term does not depend on f . Thus if we
restrict to Fourier frequencies, then the Bayesian posterior simplifies to

∝
(

1

RSS(f)

)(n−3)/2

I{0 < f < 1/2}.

2. The periodogram can suggest alternative models for the data. For example, if the
periodogram has two prominent peaks, then this suggests the model:

yt = β0 + β1 cos(2πf1t) + β2 sin(2πf1t) + β3 cos(2πf2t) + β4 sin(2πf2t) + εt. (8)

Formal inference for this model proceeds very similarly to (7). The main difference is
that the definition of RSS should now be changed to:

RSS(f1, f2)

= min
βj ,0≤j≤4

n∑
t=1

(yt − β0 − β1 cos(2πf1t)− β2 sin(2πf1t)− β3 cos(2πf2t)− β4 sin(2πf2t))
2

The analysis now proceeds as before with this modified definition of RSS. The MLE of
f1 and f2 is obtained by minimizing RSS(f1, f2) over f1, f2, and the Bayesian posterior
is given by

∝
(

1

RSS(f1, f2)

)(n−5)/2

|XT
f Xf |−1/2
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where Xf is now given by

Xf1,f2 =



1 cos(2πf1(1)) sin(2πf1(1)) cos(2πf2(1)) sin(2πf2(1))
1 cos(2πf1(2)) sin(2πf1(2)) cos(2πf2(2)) sin(2πf2(2))
· · · · ·
· · · · ·
· · · · ·
1 cos(2πf1(n)) sin(2πf1(n)) cos(2πf2(n)) sin(2πf2(n))


In practice, evaluation and minimization of RSS(f1, f2) can be done either on a joint
grid for f1 and f2, or some sequential algorithm. It may be helpful to note here that
if f1 and f2 are both Fourier frequencies and both lie strictly between 0 and 0.5, then

RSS(f1, f2) =
∑
t

(yt − ȳ)2 − 2I(f1)− 2I(f2).

Thus if one restricts to Fourier frequencies, then inference under the model (8) can
be easily via the periodogram. If we work with arbitrary frequencies, grid-based min-
imization of RSS and evaluation of the Bayesian posterior would be computationally
expensive.

4 Other Nonlinear Regression Models

While our focus so far has been on sinusoidal models, the methodology can be applied in the
same way to some other nonlinear regression models. Here are some examples:

1. Consider the model:

yt = β0 + β1t+ β2 cos(2πft) + β3 sin(2πft) + εt (9)

The difference between (7) and (9) is the presence of β1t. The RSS for this model is:

RSS(f) = min
β0,β1,β2,β3

n∑
t=1

(yt − β0 − β1t− β2 cos(2πft)− β3 sin(2πft))2 .

2. Consider the model:
yt = β0 + β1t+ β2(t− s)+ + εt (10)

This is sometimes called the broken-stick regression model because the function t 7→
β0 + β1t+ β2(t− s)+ resembles a broken stick. RSS for this model is:

RSS(s) = min
β0,β1,β2

n∑
t=1

(yt − β0 − β1t− β2(t− s)+)2 .

Homework Two will contain some other examples of these models.
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