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Part 2: Bayesian analysis in a simple estimation problem

Problem 1. Suppose we have siz observations
Y1 =26.6,Y, =38.5,Y3 =34.4,Y, =34,Y5 = 31,Ys = 23.6,

which we model as N
Yi,..., Y RN, o),

where 0 and o are unknown parameters. Conduct Bayesian inference on the unknown
parameters 8 and o®. Note that the answer depends on your choice of priors for 6 and 2.

Suggestion. Try using the following priors
0,log o~ Unif(—C, )

with a large constant C, as in the last lecture.

Solution. The first step is to choose priors for 8 and o®. Similar to the analysis of linear
regression in class, we shall assume that

0,log o = Unif(—C, )

for a large constant C. These priors are supposed to capture our large prior uncertainty on
the values of 0 and o. In density form, the prior density becomes:
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The posterior density of 0,0 given the observed data Y1,...,Y, is therefore
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This gives the joint posterior of 0 and o. If we want only the posterior of 0 (i.e., the
conditional density of 0 given the data Y1,...,Y, ), we need to integrate the above with respect
to . This gives the following:
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When C' is large, the integral will be basically be the same as 0 to oo, leading to:
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When C is large, the indicator above will play no role, so we just drop it to obtain:
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It turns out that this posterior density is related to the t-density with n—1 degrees of freedom.
To see this, recall (from wikipedia for example) first that t-density with n—1 degrees of freedom
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To see the connection between (2) and (3), first write (below y = (y1 + -+ + yn)/n)
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The expression (4) looks very much like the t-density (3). To see this more explicitly, let us
compute the posterior density of \/n(0 — g)/s:
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This proves that
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where t,_1 is the t-distribution with n — 1 degrees of freedom.

With this formula, we can do any uncertainty quantification for 6 based on the observed
data y1 = 26.6,y2 = 38.5,ys = 34.4,y4 = 34,y5 = 31,ys = 23.6. For example, we can
calculate the posterior probability that 6 belongs to the interval [28,32] as

IP{28§0§32

Vi =26.6,Ys = 38.5,Y; = 34.4,Y; = 34,Y5 = 31, Y = 23.6}

_p V6(28 — 31.35) <t < V6(32 — 31.35) e
5.48 5.48

We can also give an interval whose posterior probability is exactly 0.95. Indeed, using the
fact that
P{—2.57 < t5 < 2.57} = 0.95,

we obtain
6(60 —31.35
P {—2.57 < \f(548) < 2.57Y1 =26.6,Y, =385,Y3=344,Y, =34,Y5 =31, Ys = 23.6}
=0.95
or

P {25.6 <f <371

Vi =26.6,Yo =38.5,Y3 = 34.4,Y, = 34,Ys = 31, Y = 23.6} =0.95



If only a point estimate of 0 is desired, then one can simply use the posterior mean which
equals § = 31.35 (this is also the posterior median and the posterior mode as the t-distribution
is symmetric about 0).

Next, let us focus on inference for the parameter o. To obtain the posterior density for o,
we need to integrate (1) with respect to 6. This gives
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Writing > 1 (yi — 0)> = Y1 (yi — §)* + n(y — 0)?, we obtain
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Again assuming that C is large, we can calculate the integral above from —oo to oco. Using
the formula for the normalizing constant of a normal distribution, we get
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Although this expression can be left as is, we can relate this to the x>-density with a little extra
simplification assuming that C is large. Indeed, if C is large, we can replace the indicator by
I{o > 0} to get
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where s is as in (5). By a simple change of variable formula, we can now deduce that
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From here, any inference can be obtained on o. If a point estimate of o is desired, one simple

. . . . (n—1)s?
way s to just take the point estimate of ~——z—

n — 1. This gives

to be equal to the mean of x>_, which is

—1)s2
(n=1)s° AZ)S —n-1 < 6=s5=548.
o)

One can also posterior probability of any event involving o. One can also construct an
interval for o with posterior probability exactly 0.95.



