Lecture 4: Regularization and Smoothing
Introduction to Time Series, Fall 2024
Ryan Tibshirani

Relevant reading: Chapter 2.3 (smoothing) of Shumway and Stoffer (SS); Chapters 3.3 and 7.7 (smooth-
ing) of Hyndman and Athanasopoulos (HA).

1 Trouble in high dimensions?

As in the regression lecture, let’s suppose that we seek 8 € RP such that for given samples z; € RP
and y; € R (predictor and response pairs), i = 1,...,n,

~ T L
v~z B8, i=1,...,n

(As explained in that lecture, our notation omits the intercept from the model, but that is done
without a loss of generality, since it can always be obtained by appending a coordinate value of 1 to
the start of each x;)

Equivalently, we can write y € R™ for the response vector (with i'" component y;) and X € R™"*? for
the feature matrix (with i*" row z;), and say that we are seeking 3 such that y ~ X3

Recall, the least squares estimates of the coefficients are given by solving

n

: T2 . 2
P — X -X 1
min 1(yz v B)° <= min |y — X3 (1)
i—
where we use || - ||o for the Euclidean or £, norm of a vector, defined for a € R? as ||al|3 = Z?:l a?

If p < n and rank(X) = p (here rank(X) denotes the rank of the matrix X), then this produces the
unique solution X
B=XTX)"1XTy (2)

But if p > n, which means we have more features than samples, which we often call the “high di-
mensional” (or “overparametrized”) setting, then we are in trouble ... the matrix XX cannot be
invertible, so the expression in (2) isn’t even well-defined

Moreover, the least squares optimization problem (1) does not have a unique solution in this case.
Indeed, are you’ll show on the homework, it 3 is one solution, then any other vector of the form

B=p+mn, wherenenull(X) (3)
also solves (1), where null(X) is the null space of the matrix X:
null(X) = {n e RP: Xn =0}
When rank(X) < p, the null space null(X) is nontrivial, and since it is a linear space: 1 € null(X) =

cn € null(X) for any ¢ € R, we see that from one least squares solution 3, we can generate infinitely
many others in (3)

Furthermore, we can always take the “one least squares solution” to be:

A= (XTX)"XTy (4)



e Here A" denotes the generalized inverse (also called the Moore-Penrose pseudoinverse) of a matrix
A. If you don’t know what that is, then it doesn’t really matter for this lecture, but you can think
of it precisely as follows: among all solutions in (1), the solution in (4) is the unique one having the
smallest £ norm || 5|z

e So, now we come to the discussion of specific troubles. There are actually two distinct troubles. The
first trouble involves the interpretation of the coefficients themselves. If we are interested in such
interpretations, then the p = n barrier is the end of the road for least squares. Why? Once p > n,
and we find any least squares solution 3 with 3; > 0 for some j, then we can always find' another
solution 3 of the form (3) with Bj < 0. You will prove this on the homework. Thus we cannot even
consistently interpret the sign of any of any estimated coefficient (let alone its magnitude)

e The second trouble involves prediction. The p = n barrier is generally disastrous for least squares
prediction. If p < n and Jnew = w1 B is the least squares prediction at a new predictor value Tpey
(for B the usual least squares coefficients in (2)), whose associated response iS Ynew, then under fairly

standard conditions for regression theory, the prediction MSE behaves as:

2 P
n—p

E[(ynew - gnew)Q] ~o

for large n and p, where o2 is the error variance. What do we notice? This explodes as p approaches
n. Big problem!

e This is being driven by the wvariance of the predictions from least squares, which grows out of control
as p approaches n

e (An interesting side note: what happens with the prediction MSE when p > n? The answer may sur-
prise you. The MSE associated with (4) is actually quite interesting and in some ways exotic when
p > n. Typically we need p to be much larger than n (away from the p = n barrier) in order for
it to be well-behaved. This has been the topic of a recent flurry of research in statistics in machine
learning ... we won’t cover this, but feel free to ask about it in office hours)

Regularization

Regularization to the rescue! This will finesse both of the problems described above: it leads to
nontrivial coefficient estimates, and often leads to more accurate predictions, by reducing variance

In the regression setting, a general approach for regularization moves us from (1) to solving:

min [y — X8]3 + AP(3) )

Here P : RP — R, is a penalty function, and A > 0 is a tuning parameter (or regularization parame-
ter), trading off the importance of the squared loss and penalty (first and second terms in (5))

In other words, the larger the value of A\, the more weight we put on penalizing large values of P(f),
which results in estimates that we call more “regularized”

Arguably the three canonical choices for penalties are based on the £y, #1, and £ norms:

P(B) = [IBllo = Y 1{B; # 0},

Jj=1

p
P(B) =18l = _18l,
j=1

p
P(B)=IBl3 =>4
j=1

ITechnically, this is only true if null(X) /£ e;, where e; is the 4P standard basis vector.



2.1

2.2

These give rise to what we call best subset selection, the lasso, and ridge regression, respectively

(Note that calling || - ||o the “¢p norm” is a misnomer, as it is not actually a norm: it does not satisfy
positive homogeneity, i.e., ||aB]lo = al|5]|o for all @ > 0. It would be more accurate to call it the “¢y
pseudonorm”, but nearly everybody just calls it the “fy norm”)

Critically, || - ||o is not convex, while || - ||; and || - ||2 are convex (note that any norm is a convex
function). This makes best subset selection a nonconvex problem, and one that is generally hard to
solve in practice except for small p. Meanwhile, the lasso and ridge regression are both defined by
convex optimization problems, and are generally much easier to compute. We won’t focus on best
subset selection further in this lecture. (Though it was the topic of a flurry of work in the operations
research literature a few years ago ... which you can ask about in office hours if you are curious)

Lastly, an important note: when there is an explicit intercept Sy in the model, we typically do not
want to penalize it, and so we modify the penalty P(8) so that it excludes Sy. This will be implicit in
everything below

Ok, really lastly, penalties like ¢; and ¢5 only make sense if all the features (columns of X) are on
the same scale (why?). Thus an important and standard preprocessing step is to scale each feature
(column of X) so that it has unit norm

Ridge
The ridge estimates of the regression coefficients are given by solving

n

P
: T 3\2 2
min > (v — ] 6) A6
=1 Jj=1
or equivalently

: _ 2 2
min [}y — X8+ AlBI3 ©)

The problem in (6) has closed-form solution, verified by differentiating the criterion and setting the
result equal to zero, .
B=XTX+ X)Xy (7)

where [ is in the p x p identity matrix. This always evists (the matrix X' X + A is always invertible),
regardless of the relative sizes of n,p

Figure 1 gives an example of the ridge regression coeflicient estimates as a function of A, fit on the
cardiovascular mortality regression data, with many features derived from lags of particulate levels

Lasso

The lasso estimates of the regression coefficients are given by solving

n

P
min > (i — B2+ A 15
peRre i=1 j=1

or equivalently ,
i - X + A 8
érel}l@ ly Bllz 18111 (8)

There are a number of key differences between the ridge (6) and (8) problems (and estimator). First,
the lasso problem does not have a closed-form solution (it does not even necessarily have a unique so-
lution; but it is essentially always unique if we have random features from a continuous distribution)

A second key difference is that the lasso estimates of the regression coefficients are sparse. In other
words, solving the lasso problem results in a vector 8 with many components exactly equal to zero,
and a larger choice of A will result in more zeros
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Figure 1: Ridge and lasso estimates on the cardiovascular mortality regression problem, with lags of par-
ticulate levels as features. (The intercept is estimated without a penalty, and omitted from the plots for
visualization purposes).



e This doesn’t happen with ridge regression, whose coefficient estimates are generically dense. Figure 2

is the “classic” picture used to explain this, and we will talk through its interpretation in lecture

Figure 2: The “classic” illustration comparing lasso and ridge, each in constrained form (from “Elements of
Statistical Learning” by Hastie, Tibshirani, and Friedman).

2.3

See Figure 1 again for an example of the lasso coefficients on the cardiovascular mortality data. We
can see that as A grows, it sets many of the coefficients of lagged features to zero

In general, this sparsity-inducing behavior of the ¢; penalty allows the lasso to perform wvariable
selection in the working linear model. By zero-ing out some coefficients exactly, it discards some
features from having any predictive influence in the fitted model. Which precise features it discards
is chosen based on the data. Many people like sparsity because it leads to better interpretability

Discussion: which one?

We should be clear that the lasso is not “better” than ridge in any general sense, and neither is ridge
“better” than the lasso. They each can help tremendously with stabilizing coefficient estimates so as
to lead to improved predictive accuracy. They each do so by regularizing in different ways

The most basic question to ask: is a sparse linear model likely to be a good (or desirable) approx-
imation to the true regression function? If so, then the lasso can outperform (or be preferable) to
ridge. On the other hand, in problems where there are many underlying features that are relevant
for prediction, ridge can outperform the lasso

(And often times people combine the two penalties which gives rise to the elastic net)

There is a lot more to say—in terms of connections to other ideas in statistics, extensions, and so
on—but we won’t be able to cover it in this class. We’ll simply view ridge and lasso as tools that
allow us to consider many more features than we would otherwise feel comfortable including in tradi-
tional regression models, and then regularize in order to control variance (stabilize estimates)

In time series regression, in the vein of examples we studied in the last lecture, this would allow us
to include many lags of a feature of interest, or a few lags of many external covariates, and so on,
and then apply a ridge or lasso penalty



e Then, you might wonder: how would we select A7 In fact, you already know the answer (for prob-

2.4

lems with a predictive focus): use time series cross-validation!

That is, define a grid of A values, fit ridge or lasso estimates for each A, let each one make predic-
tions, and select the value that yields the best CV error. You will practice this on the homework,
where you’ll also use the glmnet package to solve the ridge and lasso problems

Interlude: coordinate descent for the lasso

As a very quick interlude, here is an algorithm used to compute lasso estimates in practice, called
coordinate descent. In fact, this is what is used by the glmnet package internally. We repeat, cycling
over j = 1,2,...,p until convergence (until the coefficient estimates do not really change anymore),
the following steps (with z; denoting the j*® column of X):

— Compute the j*" partial residual: =1y — Z#j szz
— Compute the univariate least squares coeflicient of r; on z;:

Ty
- TiT;

g
5] ijxj

— Update the j*" lasso coefficient by “soft-thresholding” the above:
Bj+2) i B < —2Mz;3
Bj =4 B;—2x if B; > +2)|z]3
0 otherwise
where recall ) is the lasso regularization parameter

(Note that similarity here between this algorithm and the connection between marginal and multiple
regression that we covered previously. In fact, this algorithm is still valid when A = 0, and it can be
used to compute least squares coefficients!)

Smoothing
Shifting gears, we will now talk about smoothing, which for us will be a tool that is mainly used for
retrospective rather than prospective estimation (as in forecasting)

As with regression, most smoothing techniques are not actually specific to time series data, so our
notation will be generic to reflect this. There are so many smoothers out there, and we will choose
three ones to discuss that are generic in principle, but are quite popular (and in part, have roots in)
the time series context

Recall the signal plus noise model from our earlier lectures,

yi:9i+€ia izl,...7n
where €;, i = 1,...,n are white noise errors, and 6;, i = 1,...,n denote the unknown means that we
want to estimate, assumed to be smoothly varying across the index

Two broad classes of smoothers of interest are as follow. The first are linear filters, which are (weighted)
local averages, of the form

k
éi: Z a;iYi—j, i:L...,n (9)
j=—k

for some weights a;, j = —k,...,k



3.1

3.2

The second are penalized least squares smoothers, which are given by solving

n

: Y AY
min » (yi = 6:)° +AP(6) (10)

i=1
for some penalty function P : R™ — R, and tuning parameter A > 0

You should be able to clearly see the connection between smoothing and regularization, with (10)
being a special case of (5) (when X = I, the identity matrix). Note, the choice of penalties that are
common and useful in smoothing, as we’ll see below, are more complex than simple ¢; or {5 penalties

There is a broader connection between smoothing and regression, embodied by what is called an ad-
ditive model. In one sentence: this is a regression, but with individual features replaced by nonlinear
transforms of features, where the nonlinearities are fit by smoothers. We’ll very briefly return to this
at the end

Linear filters

A moving average (MA), either of centered or trailing type, is one of the basic and widely-used ex-
amples of a linear filter, of the form (9). For a window of (odd) length m = 2k + 1, a centered MA

smoother uses weights
1
A_j, = Qg ="'+ =Qqa = —
m
For a window of (odd or even) length m = k + 1, a trailing MA smoother uses weights
1

a_p=---=a_1=0 and aqy=--=ap,=—
m

(For either, centered or trailing MA smoothers, or really linear filters in general, there will be annoy-
ing boundary issues to pay attention to ... some software packages may just pad the response vector
with Os in order to deal with them; but a more principled approach is probably to renormalize the
weights at the boundaries so that the filter is averaging over the “right” number of observations; and
the safest approach is to just omit estimates at the boundaries, i.e., report NAs)

Figure 3 displays an example of centered MA smoothing on the Southern Oscillation Index (SOI),
which measures air pressure in the Central Pacific Ocean. We can see that the results look fairly
accurate (they track the known cycles which occur every 3-7 years, due to the El Nino effect), but
the estimates look a bit “choppy”

We can get smoother-looking estimates by using a smoother weight sequence (with larger k). This is
precisely what kernel smoothing does: it uses k = n and

R <¢7 N

Y K(i/b)

for a particular kernel function K : R — R and bandwidth b. Think of the bandwidth as a tuning
parameter, just like the regularization level A in ridge or lasso

n

A common choice of kernel is the Gaussian kernel, K (u) = e /2, Figure 3 gives an example of

Gaussian kernel smoothing on the SOI data again. We can see that the estimates look more smooth

(Note that a centered MA is actually kernel smoothing with a “boxcar” kernel: K (u) = 1{|u| < b})

Hodrick-Prescott filter
The Hodrick-Prescott filter, or simply HP filter, is a penalized estimator of the form (10), defined by

n n—2

- EPRY _op. IRY
min iZI(yl 0;) +>\;(91 20;41 + 01 2) (11)
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Figure 3: Moving average and Gaussian kernel smoothing estimates fit to the Southern Oscillation Index

(from SS).



3.3

We can see that the penalty is squared ¢5 norm of the terms 6; — 20,1 + 0,42, =1,...,n — 2. Each
of these are a second difference of 6, centered at a particular index

The HP filter is named after two econometricians who proposed the idea in the early 1980s. But it is
worth noting that very similar ideas were around much, much early (the idea of penalizing according
to squared first differences dates back to the 1899, and according to squared third differences dates
back to 1923)

Like the ridge problem, which is similar in spirit (but aimed at solving a different problem), the HP
filter problem (11) has an exact solution. First define the second difference matrix D € R(*=2)x" by

1 -2 1 0o 0 --- 0 0 O
o 1 -2 1 0 0 0 O
p=1(0 0 1 -2 1 0 0 O (12)
o o o o o0 --- 1 =21
and then rewrite the HP filter optimization problem (11) as
min ||y — 0|[3 + A D6|3 (13)

OcR™

The HP filter solution can be derived by differentiating the criterion in (13), setting it equal to zero,
and solving, which yields R
0= (I+AD"D) 1y (14)

Figure 4 shows an example of the HP filter fit to the winning men’s times from the Boston marathon,
at a few different values of the regularization level A. (What happens to the HP filter as A — 00?)

The HP filter has a computational advantage a linear filter with smooth weights, such as the Gaus-
sian kernel smoother (the HP filter can be computed in linear-time because D is banded). In terms
of their qualitative behavior, the HP filter and a Gaussian kernel smoother are pretty similar

In fact, though it not obvious at all, the HP filter admits an equivalent form as a kernel smoother,
for a special implicit kernel (you will study this as a bonus problem on the homework)

The HP filter is worth knowing about because it is quite a popular tool in macroeconomics, where it
is primarily used for time series decomposition: it is used to estimate a trend component in a time

series, and then the residuals from this are used to estimate a cyclic component. However, recently,
some econometricians have criticized this practice, on the basis that it can induce spurious correla-
tions in the residuals, along with other concerns.?

Another reason worth learning about the HP filter is that it provides us a natural bridge to another
method that we’ll cover next, which acts completely differently from any linear filter

Trend filter
The ¢; trend filter, or simply trend filter, is another penalized estimator of the form (10), defined by
n n—2
Inin i:1(yz‘ —0:)% + A ; |0; — 20,41 + 02| (15)

We can see that the penalty is the ¢; norm of second differences of §. Thus, compared do the HP
filter, the only difference is in the use of an ¢; norm penalty, and not squared /> norm penalty

2See Hamilton “Why you should never use the Hodrick-Prescott filter” (2017), but also Hodrick “An exploration of trend-
cycle decomposition methodologies in simulated data” (2020), for a rebuttal which challenges some of the ideas proposed by
Hamilton. Hodrick finds empirically that the HP filter does a better job of isolating the cyclic component (in simulation)
than the regression method proposed by Hamilton.



e Just as in (13), we can rewrite the trend filter (15) more compactly as

. 2
min iy — 0l + Al D6l (16)

where D € R("=2)X" is the second difference matrix in (12)

e Swapping the squared {5 penalty with an ¢; penalty on second differences results in a very different
behavior in the estimator. Think of the analogy of ridge versus the lasso. Trend filtering yields esti-
mates that are sparse in second differences: if we denote by 6 the solution vector in (16), then many
components of D will be exactly equal to zero, and a larger choice of A will generally result in more
Z€ros

e Since o
0i + O;iyo
2
this means that many components 0; will lie on the line defined by their neighbors

éi — 2éi+1 + é¢+2 =0 <— éiJrl =

e Or in other words, the trend filter solution 6 will have a piecewise linear structure, with a kink at
each point ¢ such that 6,11 # (6; + 6;12)/2. These kink points (also called knot points) are chosen
adaptively, based on the data

e Figure 4 shows an example of the trend filter on Boston marathon data again. The piecewise linear
structure, and qualitative difference to the HP filter, is very clear. (What is the behavior of trend
filtering as A — oo?)

e So, how do you choose the regularization level A in the trend filter or HP filter, or bandwidth b in a
kernel smoother? Cross-validation! (Are you tired of that answer by now?) This is actually closer to
traditional CV, rather than time series CV (since we are not in a forecasting setting, where we are
predicting the future), but just more structured in how we form the folds

e To tune any one of the smoothers described above, we can define (say) 5 folds using every 5" point
in the sequence. That is, we leave out every 5 point, fit the smoother on the remaining points, over
a grid of tuning parameter values, and calculate the squared error on the held-out points.? Doing
this 4 more times, where each time we shift the indices of the held-out points forward by one, we
will be able to compute the average error over all points, and use this to select the tuning parameter
value. You’ll get to see this on the homework

e (An important side note: trend filtering can be extended to model a piecewise polynomial of an ar-
bitrary degree, not just linear; as in the above, the knots in this piecewise polynomial will be chosen
adaptively based on the data. So it can generate smoother-looking fits, like the HP filter or kernel
smoothing, but the key difference is that it has a property called local adaptivity, which comes from
its ability to select knots based on the data. Ask about this in office hours if you are curious to hear
more!)

Additive models

e To gear up to very briefly discuss additive models, we have to first make clear the following point:
each one of the smoothers described in the last section can be extended to a problem where the input
points in the underlying smoothing problem are arbitrary: x;, i = 1,...,n (rather than simply x; = i,
as would be the case in standard time series)

e Now let’s introduce the additive model. This extends the basic multivariate linear regression model:

p
yz"%ﬁo-FZﬂj%j, t1=1,...,n

Jj=1

3To form an estimate at each held-out point, we can use linear interpolation of the estimates at its neighbors.

10
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Figure 4: HP filter and trend filter estimates fit to the winning men’s Boston marathon times (from HA),
each at a few different values of A.
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P
vimBo+ Y filey), i=1,....n
j=1
where each f; is a smooth transformation to be estimated

In other words, we have moved from estimating linear transformations of the features to nonlinear
ones, which we fit using a smoother (traditional packages use kernel smoothing, or spline smoothing,
which is similar to using the HP filter)

This can be super useful, and hopefully you’ll learn about this in more detail in your regression
class (or some advanced modeling class). For us, it is mostly just an idea mentioned in passing. But
towards the end of the course, when we cover the Prophet forecasting model, you will see it in action
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