
Lecture 3: Linear Regression and Prediction
Introduction to Time Series, Fall 2024

Ryan Tibshirani

Related reading: Chapter 2 of Shumway and Stoffer (SS); Chapters 5.8, 5.10, and 7 of Hyndman and
Athanasopoulos (HA).

1 Simple regression

1.1 Population version
• We’ll start off by learning the very basics of linear regression, assuming you have not seen it before.
A lot of what we’ll learn here is not necessarily specific to the time series setting, though of course
(especially as the lecture goes on) we’ll emphasize the time series angle as appropriate

• A simple linear regression model for a response variable y and predictor (or covariate, or feature)
variable x is one in which we seek coefficients (or parameters) β0 and β1, such that, informally,

y ≈ β0 + β1x

To be clear, here x, y are all real-valued (rather than multivariate) random variables

• If we had access to the full distributions of x, y, which is what we call the “population version” of
regression, then we could ask: what is the best choice of parameters β0, β1 with respect to expected
squared error?

• Mathematically, we are looking to solve

min
β0,β1

E
[
(y − β0 − β1x)2

]
(1)

or in other words, we are asking for the “line of best fit” at the population level. You’ll often also
hear this referred to as the “least squares” problem

• We can find the answer by differentiating the loss Q = E[(y − β0 − β1x)2] in (1) with respect to each
parameter and setting it equal to zero. Differentiating inside the expectation gives:

∂Q

∂β0
= E

[
2(β0 + β1x− y)

]
= 0

∂Q

∂β1
= E

[
2x(β0 + β1x− y)

]
= 0

• As you’ll show on the homework, solving this pair of equations gives the population regression coeffi-
cients:

β∗1 =
Cov(x, y)

Var(x)
, β∗0 = E(y)− β∗1E(x) (2)

• Recalling that Cor(x, y) = Cov(x, y)/
√

Var(x) Var(y), we may rewrite the slope as

β∗1 = Cor(x, y)

√
Var(y)

Var(x)
,

which shows that it treats x, y asymmetrically. This is important to remember. In general, when y is
the response and x is the predictor, we speak this relationship as the “regression of y on x”
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1.2 Sample version
• For the “sample version” of linear regression, we seek β0, β1 such that for given samples xi, yi (covari-

ate and response pairs), i = 1, . . . , n,

yi ≈ β0 + β1xi, i = 1, . . . , n

but without access to the full distributions of each xi and yi, just given these samples

• We can imagine two ways to proceed:

1. Start from the population-level formula (2), and use plug-in estimates for the covariance and
variance

2. Start from the population-least least squares problem (1), write down a sample version, then
solve it

• Somewhat remarkably, these two strategies end up at the same answer (which need not be the case)

• For strategy 1, we use the sample covariance and sample variance,

Ĉov(x, y) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ), V̂ar(x) =
1

n

n∑
i=1

(xi − x̄)2

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi are the sample means, and plug these into (2) to get:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
, β̂0 = ȳ − β̂1x̄ (3)

which we call the sample regression coefficients

• For strategy 2, we write down the sample least squares problem

min
β0,β1

n∑
i=1

(yi − β0 − β1xi)2 (4)

• Similar to before, denote the loss in (1) by Q =
∑n
i=1(yi − β0 − β1xi)2 and differentiate with respect

to each parameter and set it equal to zero:

∂Q

∂β0
=

n∑
i=1

2(β0 + β1xi − yi) = 0

∂Q

∂β1
=

n∑
i=1

2xi(β0 + β1xi − yi) = 0

• You’ll show on the homework that solving this pair of equations leads you right back to (3)

• The lm() function in R performs linear regression. The notation you use is lm(y ~ x), where y ~ x
is called a “formula”. This can be read as an instruction: “regress y on x”

• Figure 1 gives an example where we regress chicken prices—our response, y, on time—our predictor
x. Just to give you a clear sense, the data are

y1 = 65.58, y2 = 66.48, y3 = 65.70, . . .

x1 = 2001.583, x2 = 2001.667, x3 = 2001.750, . . .

where we interpret each value of x as a given year plus a fraction, representing the month of the year

• After running lm(), the resulting object is a (special) list, with a lot of useful components. Calling
coef() on the object gives the regression coefficients
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Figure 1: Linear regression of chicken prices and on time (from SS).

• Figure 2 gives another example, of a different flavor. Now the response y is itself one time series: car-
diovascular mortality in Los Angeles over a certain time period, and the covariate x is itself another
time series: particulate levels in Los Angeles over the same time period. The top panel in Figure 2
plots them individually as time series, and the bottom panel plots them together, as a scatter plot,
toether with the fitted line from linear regression. We can imagine, in a future period (beyond the
end date of these time series), using the estimated regression coefficients to predict mortality from
particulate levels

1.3 Prediction: ex-ante and ex-post
• We can use the estimated coefficients β̂0, β̂1 in (3) from linear regression estimates to make predic-
tions about the response given a new predictor value xnew. This prediction is

ŷnew = β̂0 + β̂1xnew,

where the “hat” notation on the left-hand side emphasizes that it is an not observed, but an esti-
mated (predicted) value of the response

• In time series context, we often will use the term forecasting synomously with prediction. In the time
series, there is an interesting distinction between two types of forecasts, based on whether or not the
predictor value xnew needed to make forecasts is available in advance. Specifically:

– An ex-ante forecast is a “true” forecast, using only information that is available at the time
the forecast was issued. So the predictor values need to either be available, or themselves be
forecasted. For instance, we can make ex-ante forecasts in the chicken regression example

– An ex-post forecast is made using later information on the predictors. So we wait until xnew is
observed, then issue our forecast. For instance, we can make ex-post forecasts in the mortality
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Figure 2: Linear regression of cardiovascular mortality on particulate levels in Los Angeles (from SS).
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regression example (but cannot easily make ex-ante forecasts unless we somehow could forecast
particulate levels into the future)

• One way around the circumvent the potential difficulty of making ex-ante forecasts is to use lagged
predictors; we’ll discuss this and other forecasting issues in more detail later

1.4 A note on assumptions and philosophy
• What have we assumed above? Nothing. That is, we do not need to assume that the true relationship
between y and x is linear in order to perform linear regression as in (3)

• Thus, in general, there need not be any “true regression coefficients” that we’re actually tracking ...
but, we can always think of the sample estimates β̂0, β̂1 in (3) as tracking the population quantities
β∗0 , β

∗
1 in (2). The latter are basically also always well-defined, regardless of linearity. Recall, they

are the viewed as the best linear approximation at the population level

• So, to be clear, we can always fit sample coefficients β̂0, β̂1 and use them to make predictions (fore-
casting, in time series). Sometimes we call this our “working model”: to use a linear working model is
a modeling decision, not an assumption

• If this predicts well (has good accuracy), then our working model was a good decision, and depend-
ing on our use case, we may not even care about whether the true model is linear (or related assump-
tions in classical linear modeling)

• Meanwhile, for use cases would that require inference, we require lots of assumptions. More, later

2 Multiple regression

2.1 Population version
• What about the case where we have more than out covariate? This is called multiple linear regres-
sion. Now let x = (x1, . . . , xp) ∈ Rp be a random vector of covariates, with each entry xj being an
individual covariate of interest

• We seek β0, which is an intercept term as before, and also a whole coefficient vector β = (x1, . . . , xp) ∈
Rp, such that

y ≈ β0 + β1x1 + · · ·+ βpxp︸ ︷︷ ︸
βTx

• Our convention throughout this class will be to treat all vectors as column vectors. Thus aT, which is
the transpose of a vector a, is a row vector, and for vectors a, b ∈ Rd, we can use aTb = a1b1 + · · · adbd
to denote their inner product.

• (Note that of course aTb = bTa, so it doesn’t matter whether we write βTx or xTβ in our model)

• As in (1), we define the population-level regression coefficients by minimizing expected squared error,

min
β0,β

E
[
(y − β0 − xTβ)2

]
(5)

• The solution, which you can think of as generalizing (2), is

β∗ = Cov(x)−1 Cov(x, y), β∗0 = E(y)− E(x)Tβ∗ (6)

• Let’s check that the dimensions make sense: here Cov(x) ∈ Rp×p, a p × p matrix of real values; the
element in its ith row and jth column is

[Cov(x)]ij = Cov(xi, xj)
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Also Cov(x, y) ∈ Rp, a p-dimensional vector, with ith entry

[Cov(x, y)]i = Cov(xi, y)

So Cov(x)−1 Cov(x, y) ∈ Rp, itself a p-dimensional vector, which is what we need for β∗ in (6). Simi-
larly, you can check that the dimensions make sense for β∗0

• To derive (6) as the minimizer in (5), we can again differentiate with respect to each βj and set the
result to zero, but the calculation is a little more difficult (this is a bonus on the homework)

2.2 Sample version
• The sample version of multiple linear regression falls out of the population version entirely analo-
gously, as it did in the simple linear regression case. We seek β0 ∈ R and β1 ∈ Rp such that for given
samples xi, yi (covariate and response pairs), i = 1, . . . , n,

yi ≈ β0 + β1xi1 + · · ·+ βpxip︸ ︷︷ ︸
xTi β

, i = 1, . . . , n

• We can do this either by plug-in estimates from (6), or by writing down a sample version of the least
squares problem (5) and solving it, and again they will both lead to the same answer

• Let’s pursue the latter. It will be convenient to adopt the following convention, which alleviates us
from keeping track of an explicit intercept term β0, without any loss of generality. We simply write

yi ≈ xTi β, i = 1, . . . , n

without intercept. Then all results that we will derive can be translated to the model with intercept
via the following trick: we redefine each vector xi so that it has a 1 prepended to it:

x = (1, x1, . . . , xp) (7)

Then we read of results in this new parametrization: post-transformation, the first entry of β serves
as the intercept, and the rest serve as the coefficients multiplying each xj

• (There is another way to get rid of the intercept as well, which we’ll learn when we connect multiple
to simple linear regression a bit later, which may be more intuitive to some of you)

• The sample least squares problem for multiple regression is now as follows:

min
β∈Rp

n∑
i=1

(yi − xTi β)2 (8)

• The solution, obtained again by taking derivatives and setting equal to zero, is

β̂ =

( n∑
i=1

xix
T
i

)−1 n∑
i=1

xiyi (9)

• You can check that the dimensions all make sense here (that the right-hand side in (9) produces the
correct dimensions for β̂)

2.3 Matrix notation
• It is more convenient, once you’ve sufficiently familiarized yourself with matrix notation, to recast
regression in terms of matrices and vectors. Let y = (y1, . . . , yn) ∈ Rn be the vector of our response
values, and X ∈ Rn×p the matrix of our predictor vectors, whose ith row is xTi
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• In other words,

y =


y1
y2
...
yn

 , X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...
xn1 xn2 · · · xnp


• Recall, for a coefficient vector β ∈ Rp, the matrix-vector product Xβ ∈ Rn, which to emphasize is an
n-dimensional vector, is

Xβ =


xT1β
xT2β
...

xTnβ


This means that we can write our sample working model compactly as

y ≈ Xβ

• Recall, the Euclidean or `2 norm ‖ · ‖2 of a vector a ∈ Rd is defined as ‖a‖22 =
∑d
i=1 a

2
i . This means

we can write our sample least squares problem (8) compactly as

min
β∈Rp

‖y −Xβ‖22 (10)

• Finally, the sample least squares estimates (9) can be written as

β̂ = (XTX)−1XTy (11)

This form (11) is by far the more commonly-used (and easily-remembered) form for the least squares
coefficient estimates, compared to (9). You’ll prove the equivalence between the two forms (9), (11)
on the homework

• Important technical note: above in (11) (also in (9)), we have implicitly assumed that the features—
the columns of X—are linearly independent. This can only happen if p ≤ n, i.e., if we have no more
features than samples. Otherwise, XTX will not have an inverse, strictly speaking. This is not the
end of the world and there are many interesting things to talk about (along the lines of regulariza-
tion) when p > n, but it’s beyond our scope in these notes. More, next time!

2.4 Multiple vs simple: a connection
• There is quite an interesting connection between multiple regression of y on x and simple regression

of y on each xj , the latter often referred to as a marginal linear regression

**Warning**

There will be a notational clash between xi as used above and xj as will be used here. Pre-
viously, we used xi ∈ Rp to refer to vector containing all feature values for the ith sample.
Here, we are going to use xj ∈ Rn to refer to the vector containing the jth feature values
measured over all samples.

For example, suppose we have two features: apples and bananas, and we measure the quan-
tity of each across n = 100 households. Then the previous subsection used xi ∈ R2 as the
number of apples and bananas in the ith household. But here we’ll use xj ∈ R100 as the
number of apples (if j = 1) in the 100 households, or bananas (if j = 2) in the households.
Get it?

Since the beginning of time regression, scholars have run up against this problem and have
racked their brains for notational solutions. But there is no real good notational solution to
this. (Yes there are lots of options but all of them have some ugliness to them.)
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We’ll just make to use xi ∈ Rp to always refer to all features for the ith sample, and xj ∈
Rn to always refer to the the jth feature for all samples (and try to never mix indices). In
other words, the ith row and jth column of the feature matrix X, respectively. So you just
have to remember that i indexes samples (rows), and j indexes features (columns).

**End warning**

• Now that we’ve gotten that important notational piece out of the way, we will define more quantities
in order to describe the connection between multiple and marginal regression

• Fix any j (arbitrary). Given a single feature xj = (x1j , . . . , xnj) ∈ Rn, and response vector y =
(y1, . . . , yn) ∈ Rn, the marginal (or simple) regression of y on xj , without intercept, is a very similar
formula to what you saw in (3):

β̃j =

∑n
i=1 xijyi∑n
i=1 x

2
ij

(Note: the effect of the intercept is only that it centers the values of xij around their sample average,
and yi around their sample average)

• We can rewrite this succinctly in inner product notation as:

β̃j =
xTj y

xTj xj
(12)

• Meanwhile, let’s consider the jth estimated regression coefficient β̂j from the multiple regression of y
on X, as in (11). Is this the same? That is, is the jth component of (11) the same as (12)?

• The answer is generally no! Putting in other features into the linear regression will generally affect
the estimated coefficient for xj , i.e., will alter its “predictive influence” on y

• However, there is a precise connection between multiple regression and marginal regression. Let’s
write X−j ∈ Rn×p for the feature matrix but after dropping xj ∈ Rn, the jth column. Suppose we:

– Regress y on X−j (a regression of y on all but the jth feature), yielding an estimated coefficient
vector α̂ ∈ Rp−1, and residual

ŷ−j = y −X−j α̂ (13)

– Regress xj on X−j (a regression of xj on all of the other features), yielding an estimated coeffi-
cient vector θ̂ ∈ Rp−1, and residual

x̂−jj = xj −X−j θ̂ (14)

• In these residuals (13), (14), we have “regressed out the influence” of all other features on each of y
and xj . Then, after removing such infuence, if we perform a marginal regression of ŷ−j on x̂−jj , we
get precisely the jth multiple regression coefficient:

β̂j =
(x̂−jj )Tŷ−j

(x̂−jj )Tx̂−jj
(15)

• In other words, (15) connects multiple regression to marginal regression: it shows that the jth coeffi-
cient in a multiple regression (11) is equivalent to a marginal regression of y on xj , but only after we
have accounted for the effects of all the other predictors, by “regressing them out”

• The best way to understand the relationship between (15) and (11) is geometrically (which is also
a great way to view linear regression in general) but that perspecive requires a bit more advanced
linear algebra, which we won’t cover. For now, you can just think of the following: the bigger the
correlations between xj and columns of X−j , the bigger the effect will be in (14), where we regress
out X−j from xj , and this will make the multiple (15) and marginal (12) coefficients quite different
from each other
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• On the other hand, when xj is orthogonal to (or uncorrelated with, if we are using a model with
intercept) each column of X−j , then the residual x̂−jj in (14) is no different from xj , and in fact one
can show that the multiple regression coefficient in (15) and the marginal one in (12) are the same

• Figure 3 revisits the cardiovascular mortality example from earlier. Now we perform the regression
of cardiovascular mortality on two features: particulate levels and temperature. (In R we can regress
y on two features x1 and x2 by running lm(y ~ x1 + x2).) For each feature, the coefficients from
multiple regression aren’t too different from the marginal regression coefficients (as is seen in the
bottom panel by the slopes of the lines), though the intercept changes noticeably. The relatively
small change in the coefficients on particulate levels and temperature is due to the fact that these
two are not very correlated (as is seen by looking at their time series, which are a bit “out of phase”
with each other)

2.5 Interlude: best linear unbiased estimator
• Briefly, we discuss an important optimality property here of least squares estimates, before moving
on to classical inferential results next. We are going to need to introduce an assumption for this part:
we assume that the response vector y ∈ Rn is related to the feature matrix X ∈ Rn×p by

y = Xβ + ε, where ε ∼WN(0, σ2I) (16)

for some unknown coefficient vector β ∈ Rp, and a white noise vector ε ∈ Rn

• In (16), ε ∼WN(0, σ2I) is our notation for a white noise vector: the first argument specifies that the
mean is zero, E(ε) = 0, and the second argument specifies that the covariance satisfies Cov(ε) = σ2I,
where I is the n× n identity matrix. That is, the components satisfy Var(εi) = σ2 and Cov(εi, εj) = 0
whenever i 6= j

• Importantly, in (16), the feature matrix X is assumed to be fixed (not random). Therefore, we can
also write (16) even more compactly as

y ∼WN(Xβ, σ2I)

• Assuming that X is fixed in the context of the above model is a fairly strong condition. We’ll go into
more why in the next section (when we go even further and assume normality of the error distribu-
tion), but for now we’ll just emphasize that we are assuming that the mean of the response is truly
linear in the features, and that the errors are homoskedastic—they have equal variance regardless of
the feature values

• Ok! So under the model (16), what can we say about the least squares estimates in (11)? First, note
that these are unbiased for the true coefficients β:

E(β̂) = E
[
(XTX)−1XTy

]
= (XTX)−1XTE(y)

= (XTX)−1XTXβ

= β

• This implies it is unbiased for any contrast of β. This is the term we sometimes give to an estimand
of the form aTβ, for an arbitrary vector a ∈ Rd. Observe,

E(aTβ̂) = aTE(β̂) = aTβ

• One common way to measure the quality of an estimator is its mean squared error (MSE), which for
the least squares estimator aTβ̂ of the contrast aTβ, is

MSE(aTβ̂) = E
[
(aTβ̂ − aTβ)2

]
To be clear, the expectation here is being taken with respect to data from the model (16)
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Figure 3: Linear regression of cardiovascular mortality on particulate levels and temperature (this is multi-
ple regression, with two features) in Los Angeles (from SS). The solid red lines denote the estimates from
marginal regression; the dashed blue from multiple regression.
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• With respect to MSE, how good is the least squares estimator? It is, in a certain precise sense, the
best. It is both unbiased for aTβ, as proved above, and also a linear estimator as a function of y: we
can write

aTβ̂ = (aTXTX)−1XT︸ ︷︷ ︸
bT

y

That is, aTβ̂ = bTy, where b = X(XTX)−1a

• Note: linearity of the estimator has nothing to do with linearity of the true regression model! The
former (linearity of the estimator) is a statement about linearity in y, the response; the latter (linear-
ity of the true regression model) is a statement about linearity in X, the features. This is a nomen-
clature collision, and linearity is really referring to different things here

• Now for the main event: the Gauss-Markov theorem tells us that the least squares estimator is the
best linear unbiased estimator (BLUE) of aTβ. In other words, for any other linear estimator cTy,
such that E(cTy) = aTβ (unbiasedness), we have

MSE(aTβ̂) ≤ MSE(cTy)

• A proof of this fact follows from the geometric perspective on least squares, which we won’t cover,
but you can ask about it in office hours if you are curious

• (An interesting side note! Econometricians have been recently arguing about whether or not we
can drop the “L” from BLUE: is least squares the BUE? That is, is least squares the best unbiased
estimator, period—best among all unbiased estimators, not just linear ones? The answer is ... yes, in
a sense, but it depends on how you set up the problem, because in certain problem settings the only
unbiased estimators are linear in y anyway!1)

3 Classical inference

3.1 Here comes the assumptions
• Now we’re going to cover some classical statistical inference for linear regression estimates. For this

part, we’re going to need to assume:

y = Xβ + ε, where ε ∼ N(0, σ2I) (17)

In comparison to (16), note that we have additionally assumed that the errors are multivariate Gaus-
sian (this implies they are independent across observations as well)

• As before, the feature matrix X is assumed to be fixed (not random). Thus we can write (17) more
compactly as

y ∼ N(Xβ, σ2I)

• Taking X to be fixed here is a strong assumption. To see this, let’s write this out as

yi = xTi β + εi, where εi
iid∼ N(0, σ2), i = 1, . . . , n

If each xi were indeed random (which is often the case in practice) then we would need condition on
xi in order to treat it as fixed. So then, what the above model really says is that each εi|xi is normal
with mean zero and variance σ2. And for this to be true across all observations, we need the errors
εi and feature vectors xi to be independent

1See Hansen (2022), “A modern Gauss-Markov theorem”, and then Pötscher and Preinerstorfer (2022), “A modern Gauss-
Markov theorem? Really?”, and then Portnoy (2022), “Linearity of unbiased linear model estimators”. A nice and friendly
overview is given by Allison (2022), “Is OLS BLUE or BUE?”, https://statisticalhorizons.com/is-ols-blue-or-bue/
(this is a blog post). A masterful, but much more mathematical treatment is given in Lei and Wooldrige (2022), who also
weave in important historical results that seem to have been overlooked, and prove new ones as well.
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• Now we have gotten to the heart of why this is such a strong assumption. For the errors and fea-
tures to be independent, we cannot have heteroskedasticity (error variance depending on the fea-
tures); we also cannot really have any omitted variables, because if they are correlated with xi, then
they would appear in the effective error term εi, and break independence. Can you really make the
argument that you have measured all of the relevant predictor variables in any given practical appli-
cation of linear regression?

3.2 t-test for individual coefficients
• Under (17), we can define a t-test, based on the least squares estimate (11), for testing whether or

not an individual coefficient is zero at the population-level: that is, for testing the hypothesis

H0 : βj = 0 (18)

• To set us up to discuss this, we first define an estimate of the noise variance σ2 in (17):

σ̂2 =
1

n− p
‖y −Xβ̂‖22

=
1

n− p

n∑
i=1

(yi − xTi β̂)2

This is the residual sum of squares from linear regression, divided by n− p

• We also define the matrix C = (XTX)−1. Why is this important? Because:

Cov(β̂) = Cov
(
(XTX)−1XTy

)
= (XTX)−1XT Cov(y)X(XTX)−1

= (XTX)−1XTσ2IX(XTX)−1

= σ2(XTX)−1

= σ2C

Note: in the second line we the property of covariance: for a random vector z and matrix A of appro-
priate dimension, Cov(Az) = ACov(z)AT. We’ll revisit this and related properties on the homework

• The above result implies that Var(β̂j) = σ2Cjj , where Cjj is the jth diagonal element of C

• Recall that we also know that E[β̂j ] = βj , since we already proved unbiasedness, above. Combining
two these facts (about the mean and variance of β̂j) leads us to define the t-statistic

tj =
β̂j

σ̂
√
Cjj

(19)

Under (17), this is has a t-distribution with n− p degrees of freedom. This can be used to test (18),
or a similar construction can be used form a confidence interval for βj . This follows the same general
recipe that you have learned (or will learn) about hypothesis testing and confidence intervals in your
concepts of statistics class

• When you call lm() in R, and then call summary() on its output, you are presented with these t-
statistics and associated p-values (for the test that the coefficient is zero, as in (18))

• We will not cover this further, in any real detail, because (a) you’ll likely spend a good amount of
time on this when you learn regression in your concepts of statistics course, and (b) we won’t really
rely on classical inferential tools such as this t-test very much. After all, they rest on the assumption
that the model (17) is correct, which (as we’ve discussed already) can be a dubious one in practice
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3.3 F-test for subgroups of coefficients
• Even more briefly, we can form an F-test for the hypothesis that an entire group of coefficients is

zero, which (with a loss of generality, just by relabeling the features), we can write as

H0 : βk+1 · · · = βp = 0 (20)

• We define

SSE =

n∑
i=1

(yi − xTi β̂)2, and SSE(k) =

n∑
i=1

(
yi − xTi β̂(k)

)2
where β̂(k) ∈ Rk denotes the estimated regression coefficients when only the first k features are
present

• We then define the F-statistic
Fk =

(SSE(k)− SSE)/(p− k)

SSE/(n− p)
(21)

Under (17) and (20), this has a central F-distribution with p− k and n− p degrees of freedom. We can
use this to test (20), the hypothesis that all but the first k true coefficients are zero

• An important special case: when k = p − 1, we are testing whether βp = 0, and it can be shown
that the F-statistic Fp in (21) is equivalent to the t-statistic tp in (19) for testing βp = 0, from the
previous subsection

3.4 AIC, BIC, AICc, R2, adjusted R2, ...
• We will not cover these. These are classical tools for variable/model selection. You can read about
them in SS (Chapter 2.1) and/or HA (Chapter 7.5) books if you are interested. We’ll take a more
predictive angle, and focus instead on tools like cross-validation

3.5 Diagnostics, transformations
• There are a variety of diagnostic (statistical) tools for evaluating the output of a regression model.
One of the most relevant tools to us, in the time series setting, is to examine the auto-correlation
function of the residuals

ε̂i = yi − xTi β̂, i = 1, . . . , n

• Recalling (16), one of the assumptions underlying the theory of linear regression (the Gauss-Markov
theorem, t-tests, F-tests, etc.) is that the errors εi = yi−xTi β, i = 1, . . . , n form a white noise sequence

• Thus inspecting the auto-correlation function of residuals gives us a sense of whether this white noise
assumption is true or not

• Figure 4 shows the result for the mortality regression example. We see that there are some very clear
auto-correlations persisting through about lag 15. This should have us call into question any classical
inferential tools we may want to apply. However, more constructively, it means that we may be able
to improve the regression by taking into account the fact that there is structure/information left in
the residuals. We will revisit this when we discuss ARIMA models, later

• Beyond looking at the auto-correlation of the residuals, there are a variety of classical diagnostics for
regression. You can read about these in many sources, including the R help file for plot.lm(), and
the HA book (Chapter 7.3). We will not be able to cover them, for the sake of time, however they
are worth being generally aware of, and so worth reading up on separately (and/or hopefully you will
see them in more detail in another course)

• Finally, closely related to diagnostics, and another classic topic, are transformations— made either to
the response or features—which can improve the regression model. We won’t cover them for the sake
of time, but you can look at the HA book for details (Chapters 3.1, 5.6, and 7.4)
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Figure 4: Auto-correlation function of the residuals for the linear regression of cardiovascular mortality on
particulate levels.

3.6 Correlation vs causation?
• Correlation is not causation. Hopefully that’s very clear to you in the abstract, and you’ve been
warned of it several times already in previous courses

• However, in the context of regression, it gets a bit murky. Estimation in regression is, at its core,
about correlation (recall, e.g., (15)). But causality lurks in the background in the interpretation of
regression coefficients (which we have purposefully avoided), and inferential tools like the t-test for
individual coefficients as in (18)

• You have to be very careful to remember that these are predicated on the correctness of the model
(17) (with fixed X). It is this model that allows us to translate statements about correlations to ones
that look causal. If this model is wrong (likely!) then these translations break down

• As already mentioned several times, we are taking a predictive angle and will be mostly focused on
evaluating models for their utility in prediction, or forecasting in time series

• Fundamentally, correlations between variables can be useful for forecasting, whether or not they are
causal. Everybody would probably agree that they’d prefer a simple causal relationship if they could
find one; but that is a much, much harder problem. Focusing on correlations and predictions (and
eschewing much of classical inference and interpretation) can be much more tractable, in a sense

• But at the bottom of it all, “does the model predict well?” is simply a different question. And it may
not be the question that you want to answer in every application, so having inference tools in your
toolkit, understanding when they are valid, and learning about causality, will make you a more well-
rounded statistician
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4 Prediction

4.1 Lagged predictors
• In certain situations, as discussed above, ex-ante forecasts may be difficult to obtain. Recall that in
the cardiovascular mortality regression example, where yt is the number of cardiovascular deaths at
time t and xt is the level of particulate matter at time t, a forecast of mortality ŷt+k at time t + k
would only be possible given the particulate level xt+k at time t+ k, which is not available in advance

• One way around this is use lagged predictors in the regression, i.e., instead of regressing yt on xt, we
regress yt on xt−k, i.e., we regress deaths each week on particulate levels k weeks earlier:

yt ≈ β0 + β1xt−k, t = 1, 2, 3, . . .

• In doing so, we can make predictions up to k weeks into the future. To be clear, if we’ve only ob-
served data up through time t, then we can still make forecasts

ŷt+i = β̂0 + β̂1xt+i−k, i = 1, . . . , k

• Figure 5 gives an example where we do so with k = 4. We are therefore able to make true, ex-ante
forecasts 4 weeks past the end of the time series. However, we are not able to validate these, since
don’t actually have data past the summer of 1979 in this example

• As validation, we can refit the lagged regression on the first half of the time series, and use the sec-
ond half to 4-week ahead make forecasts and compare them to the observed series. This is done in
Figure 6. It looks OK in terms of its dynamics: the trend (rise and fall) in the predictions matches
the observed trend fairly well, but pretty soon it appears to be biased upwards, particularly at the
trough of each yearly cycle

• (A word of warning: pulling this off correctly in R is actually more tricky than you might expect, so
study the code in the R notebook carefully ...)

• Of course, we can also use more than one lag as a predictor, and use as our working model:

yt ≈ β0 +

m∑
j=1

βjxt−kj , t = 1, 2, 3, . . .

for lags k1 < · · · < km. Note that this model would allow us to make forecasts k1 time steps into the
future (a lagged predictor model is limited by its smallest lag)

• The more lags—the more features, in general—that we include in the working model, the more ex-
pressive it is, meaning, it is able to capture and propogate more intricate trends. But also, the more
volatile it can become, meaning, it can make more wild predictions

• Thus there is a tradeoff here, often referred to as the bias-variance tradeoff. More expressive = lower
bias, more volatile = higher variance. This tradeoff generally expresses itself differently in different
problems, and is not something we can anticipate precisely in advance. However, fortunately, we
can still use generic tools like cross-validation to estimate prediction error (which measures bias and
variance in aggregate). We will cover this next

• Another important general tool to mention is regularization, which can often tilt the bias-variance
tradeoff in our favor. We will also cover this shortly

4.2 Error metrics
• To evaluate regression models for their predictive accuracy, we’ll first have to talk about error met-
rics: the precise formulae we will be using to measure this. The most common one is mean squared
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Figure 5: Forecasts of cardiovascular mortality made at a 4-week ahead horizon, using particulate level as
a lagged predictor. These are prospective forecasts, made at the end of the time series.
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Figure 6: As in the above figure, but pseudo-prospective forecasts on the second half, from a regression
model fit only to the first half.

error (MSE) between predictions ŷnew,t and unseen observations ynew,t, over test times t = 1, . . . , N :

MSE =
1

N

N∑
t=1

(
ynew,t − ŷnew,t

)2
• Another common one is mean absolute error (MAE), which tends to focus less on extreme errors:

MAE =
1

N

N∑
t=1

∣∣ynew,t − ŷnew,t
∣∣

• Note that MSE and MAE are scale-dependent: they depend on the scale of the response and hence
are not universally interpretable. This leads some to prefer mean absolute percentage error (MAPE):

MAPE = 100× 1

N

N∑
t=1

|ynew,t − ŷnew,t|
|ynew,t|
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• While intuitively appealing, MAPE can also have undesirable and erratic behavior if the observa-
tion ynew,t is close to zero. (Another problem that is often overlooked is that it assumes the unit of
measurement actually has a meaningful zero—e.g., are we using Farenheit or Celsius for temperature
forecasts? This would give potentially very different answers in terms of MAPE)

• A nice alternative for forecasting applications, which maintains the scale-free aspect but avoids the
zero-pitfall, is mean absolute scaled error (MASE):

MASE = 100×
1
N

∑N
t=1 |ŷnew,t − ynew,t|

1
N−1

∑N
t=2 |ynew,t − ynew,t−1|

In words, we are normalizing the error of our forecasts by that of a naive method which always pre-
dicts the last observation

• This is not just a thought exercise. Error metrics matter in practice! They really do. By this, we
mean that different metrics might lead you to prefer different forecasting models. You’ll see this
on the homework, and we may return to this in more detail later in the course when we talk about
forecast scoring rules

4.3 Optimism of training error
• The cheapest, easiest estimate of prediction error, whether measured by MSE, MAE, MAPE, etc., is
to look at training error, which is the name we give to the average error we made on the training set
that was used to fit the model. For example, for the mean squared error metric, the training error
would be

TrainMSE =
1

n

n∑
t=1

(ŷt − yt)2

where yt, t = 1, . . . , n are the responses that were used to fit the model that produced ŷt, t =
1, . . . , n. (Training MAE, MAPE, MASE would be defined analogously)

• This, in general, is not a good estimate of prediction whatsoever! It can be wrong both in absolute
and relative terms

• That is, for a given model, it is generally too optimistic as an estimate of prediction error. Equally, if
not more more problematic: it is more optimistic the more complex the model. We’ll examine these
issues on the homework

• (Classical optimism theory in regression, which we won’t cover, is actually very beautiful; ask about
it in office hours if you are curious)

4.4 Time series cross-validation
• A better estimate of prediction error is given by cross-validation or related techniques

• Actually, even simpler is called a split-sample (also called a hold-out) estimate of prediction error:
this is what we did in Figure 6, where we only fit the model to the first half of the time series, and
used the second half to make predictions. Formally, if we just measured MSE (definitions MAE,
MAPE, MASE or whatever error metric we like would be analogous) on the second half of the data,
starting at time t0 + 1, then these would be our hold-out estimates of prediction error:

SplitMSE =
1

n− t0

n∑
t=t0+1

(ŷt − yt)2

Critically, the responses yt, t > t0 were not used to fit the model that produced the predictions ŷt,
t > t0. Rather, this model was only fit on data yt, t ≤ t0

• The top left corner of Figure 6 reports the split-sample MAE, computed precisely in this way
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• In forecasting, split-sample estimates of prediction error mimic a situation where we would never
refit the model in the future. However, if we would indeed refit the model in the future (given access
to more data), then they are not really appropriate, and are generally pessimistic

• Enter time series cross-validation, where we walk forward in time, refit the model given all data that
we would have available at the given forecast date, make a forecast, record the error, and continue.
For 1-step ahead forecasts, the cross-validation (CV) MSE estimate (definitions for MAE, MAPE,
MASE would be analogous) is

CVMSE =
1

n− t0

n∑
t=t0+1

(
ŷt|t−1 − yt

)2
where ŷt|t−1 indicates that this prediction came from a model that was fit on data up through time
t− 1: that is, ys, s ≤ t− 1

• For k-step ahead forecasts, the CV error estimate is

CVMSE =
1

n− t0

n∑
t=t0+1

(
ŷt|t−k − yt

)2
where similarly ŷt|t−k indicates that this came from a model that was fit on data ys, s ≤ t− k

• Note that in either of the above two displays, we typically do not set t0 = 0, but allow ourselves to
fit the initial model (in the first step of time series CV) on some nontrivial amount of data y1, . . . , yt0
that we is sometimes call the burn-in set

• CV will be our main tool for model selection. Unsure how many lags to include (or whether to use
regularization, or what regularization strength to use, and so on)? Compute CV error estimates for
each candidate model, and select the one that performs best according to the error metric at hand

• Figure 7 visualizes the split-sample and cross-validation schemes for time series

• Figure 8 then displays the walk-forward predictions from time series cross-validation on the car-
diovascular mortality example. (Recall, these are 4-step ahead forecasts, so the CV scheme is as in
the bottom panel of Figure 7.) We can see that the MAE has improved a bit from the split-sample
forecasts in Figure 6 (from about 9.39 to 8.03). However, the forecasts still look biased upwards

4.5 Trailing windows
• It turns out that we can further improve the forecasts in the cardiovascular mortality example by
training on a trailing window, rather than on all past. In other words, to fit the regression model we
use to make a k-step ahead forecast of the response’s value at time t, instead of solving

min
β0,β1

t−k∑
s=1

(ys − β0 − β1xs−k)2

we solve

min
β0,β1

t−k∑
s=t−k−w+1

(ys − β0 − β1xs−k)2

for a choice of window length w

• Figure 9 shows such forecasts with a window length w = 50 (i.e., 50 weeks). We see that it does
quite a bit better, both qualitatively and in terms of MAE (from about 8.03 to 6.01)

• Why does this happen? Because the relationship between cardiovascular mortality and particulate
level is changing over time. In the language of the last lecture, these two series, cardiovascular mor-
tality and particulate level, are not jointly stationary
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Split-sample:

Cross-validation, 1-step ahead:

Cross-validation, 4-steps ahead:

Figure 7: Visualization of split-sample and time series cross-validation schemes (from HA).
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Figure 8: Walk-forward forecasts of cardiovascular mortality, made at a 4-week ahead horizon, using
particulate level as a lagged predictor. The regression model is trained on all past.
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Figure 9: As in the above figure, but with the regression model trained on a trailing window of 50 weeks.

• Training on a trailing window helps to hone in on the most relevant (recent) data for prediction. If
the window is too long, then the fitted model cannot adapt to nonstationarity as well; if the window
is too short, then the fitted model may be too volatile (trained on too little data)

• The choice of window w should be rigorously examined, just like the choice and number of lags. To
do so, we can use CV, once again—and to reiterate, CV is our main tool to select tuning parameters
of the working model (the number of lags and the length of the trailing window being two examples)
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