
Lecture 7: Exponential Smoothing With Trend and Seasonality
Introduction to Time Series, Fall 2024

Ryan Tibshirani

Related reading: Chapter 8 of Athanasopoulos (HA). More advanced parts (which we will brush over) are
marked with *.

1 Simple exponential smoothing
• Exponential smoothing is arguably the other—outside of ARIMA—most popular basic framework for
forecasting in time series. These two frameworks bear a neat connection, which you saw at the end
of the last lecture on ARIMA, and which we’ll revisit a bit later in this lecture

• We’ll begin with the simplest possible exponential smoother, called (unsurprisingly?) simple expo-
nential smoothing (SES). This constructs a 1-step ahead forecast via

x̂t+1|t = αxt + (1− α)x̂t|t−1 (1)

where α ∈ [0, 1] is a parameter to be estimated

• In other words, the SES forecast (1) is a weighted combination of the current observation xt and the
previous forecast x̂t|t−1

• By unraveling the iteration, which is basically the same calculation that we did in the ARIMA lec-
ture (but now in the opposite direction), this can also be written as

x̂t+1|t = αxt + α(1− α)xt−1 + α(1− α)2xt−2 + . . . (2)

This explains its name, since observations xt−k that are k steps into the past are exponentially-
downweighted, with weight (1− α)k

• (Note: we are being intentionally vague here about the boundary condition. In ARIMA, to develop
the theory cleanly, we let time extend back to −∞. In exponential smoothing, we usually index time
starting at t = 0, in which case the right-hand side in (2) would end with α(1− α)tx0)

• To make h-step ahead forecasts, we iterate (1), where (as usual) we replace any future observations
by their forecasts. This simply yields x̂t+2|t = αx̂t+1|t + (1− α)x̂t+1|t = x̂t+1|t, and in general,

x̂t+h|t = αxt + (1− α)x̂t|t−1 (3)

for all horizons h ≥ 1. That is, SES generates flat forecast trajectories. We’ll see how to extend this
to accomodate a trend, shortly

• While SES smoothing is already very intuitive, we can motivate it in different way, as follows. The
naive flatline forecaster produces forecasts via

x̂t+h|t = xt (4)

i.e., it just propogates the last observation forward. Meanwhile, the naive average forecaster pro-
duces forecasts via

x̂t+h|t =
1

t

t∑
i=1

xi (5)

Often we want something in between these two extremes, and that something is given to us by expo-
nential smoothing, recalling the form in (3)
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1.1 Component form
• For the developments that follow, it is helpful to rewrite the SES forecast (3) in what is known as
component form

• Specifically, we think of a “hidden” level `t that we are tracking over time, that base our forecasts on:

x̂t+h|t = `t

`t = αxt + (1− α)`t−1
(6)

• The representation in (6) may appear as kind of a trivial rewriting of (3), where we replace x̂t+1|t by
`t, and x̂t|t−1 by `t−1. Nonetheless, it serve as a useful jumping off point to extend the model in the
next section

• Before moving on, we give a brief example of SES from HA, to forecast internet useage per minute.
The data and SES forecast are shown in Figure 1, top row. In order to carry out the forecast, we
have to estimate the smoothing parameter α in (6). This is typically done by maximum likelihood
(but where does the probabilistic model come from? more later ...), and is what is implemented as
the default in the ETS() function in the fable package

• The forecast from SES is not very impressive, and honestly, in general, SES should probably only be
viewed as a small step up from the naive forecasters (4), (5)

• The forecast trajectory from SES is flat, by construction (as previously noted). Next we’ll see how to
extend the method to accommodate a linear trend

2 Trend extensions
• An extension of the SES forecaster in (6) is Holt’s linear trend method. This changes both the fore-
cast equation (first line) and the level equation (second line) to accomodate an estimate of the slope
bt of the series at time t. We add a trend equation to evolve the slope component

• Precisely, Holt’s linear trend method in component form (which we will stick to henceforth) is:

x̂t+h|t = `t + bth

`t = αxt + (1− α)(`t−1 + bt−1)

bt = β(`t − `t−1) + (1− β)bt−1

(7)

Now β is an additional parameter to be estimated, where both α, β ∈ [0, 1]

• As before, the level equation updates `t as an α-weighted combination of the current observation xt
and the previous 1-step ahead forecast x̂t|t−1 = `t−1 + bt−1

• The trend equation updates bt as a β-weighted combination of the current trend `t − `t−1 and the
previous trend bt−1

• Critically, the forecast trajectory from Holt’s linear trend method is no longer flat but (as the name
suggests, and as is apparent from (7)) a linear function, with slope bt

• The middle row of Figure 1 shows the forecast from Holt’s linear trend method on the internet use-
age today. To be clear, now both α, β have been estimated from the data. We can see that it pre-
dicts a downward trajectory, since bt at the last time t appears to be negative. However, its predic-
tion intervals are very wide, suggesting that the model is highly uncertain of trend directionality

2.1 Damped trends
• Linear trend forecasts at long horizons can be somewhat erratic; we’ve already seen that the forecast
variance is quite high in the example in Figure 1 (as evidenced by the wide prediction intervals) and
this wasn’t even a super long horizon ...

2



S
E

S
H

olt
D

am
ped

0 30 60 90

100

200

300

100

200

300

100

200

300

Minute

N
um

be
r 

of
 u

se
rs

80 95 SES Holt Damped

Internet usage per minute

Figure 1: Forecasts on internet useage data (from HA) at 10-steps ahead, from three different exponential
smoothing models: simple exponential smoothing (top), Holt’s linear trend (middle), and damped linear
trend (bottom).
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• As a kind of regularization, we can damp the forecasts from Holt’s linear trend method. This is often
called damped Holt’s or the damped linear trend method

• In addition to α, β ∈ [0, 1] as in (7), we introduce a third parameter φ ∈ [0, 1], to damp the forecast
trajectory:

x̂t+h|t = `t + bt(φ+ φ2 + · · ·+ φh)

`t = αxt + (1− α)(`t−1 + bt−1φ)

bt = β(`t − `t−1) + (1− β)bt−1φ

(8)

Note that when φ = 1, this reduces to Holt’s linear trend method in (7)

• The interpretation in the damped method (8) is mostly the same as in Holt’s method (7), but you
can think of the modification like this: the contribution of a given slope to a forecast in the future
diminishes at each step into the future, by a multiplicative factor of φ

• As h → ∞, the forecasts from the damped linear trend method approach a particular constant
(finite) level, namely

x̂t+h|t → `t + bt

∞∑
j=1

φj = `t + bt
φ

1− φ

For example, when φ = 0.9, this limit is `t + 9bt

• HA say that a practical range for φ is usually 0.8 to 0.98; when φ is below 0.8, the damping is too
strong (and short-term forecasts are not “trended” enough); when φ is above 0.98, it is too weak (and
you cannot distinguish the forecasts from Holt’s linear trend and damped linear trend for reasonable
horizons). In fact, the ETS() function limits the range of φ to be [0.8, 0.98], by default

• The bottom row of Figure 1 shows the forecasts from the damped linear trend method on the inter-
net useage data. To be clear, all of α, β, φ are estimated from the data. We can see a weak down-
ward trend, that is quickly attenuated. The prediction intervals are also much narrower. Inspection
of the fitted model (see the R notebook) shows that the damping coeffcient estimate is φ̂ = 0.81, so
it has quite a pronounced effect here

3 Seasonality extensions
• To account for seasonality, on top of trend, we can use what is called the Holt-Winters method. This
changes the forecast and level equations in (7) in order to adjust for a seasonal effect, but the trend
equation stays the same. We add a seasonality equation to evolve the seasonal component

• We assume a known seasonal period m. That is, observations occurring every m time points share a
common (but unknown) seasonal effect. The Holt-Winters method is then:

x̂t+h|t = `t + bth+ st+h−mk

`t = α(xt − st−m) + (1− α)(`t−1 + bt−1)

bt = β(`t − `t−1) + (1− β)bt−1

st = γ(xt − `t−1 − bt−1) + (1− γ)st−m

(9)

The parameters of the model are α, β ∈ [0, 1] and γ ∈ [0, 1− α]

• In the forecast equation (first line of (9)), we define k ≥ 0 to be the unique integer such that t+ h−
mk ∈ [t−m, t]: the seasonal component we are using to adjust the forecast should be the latest one
(whatever was available in the last period). This is equivalent to seeking mk ∈ [h, h + m]. You can
check that this is accomplished by setting k = dh/me

• The interpretation of Holt-Winters (9) is similar to Holt’s method (7), except that we seasonally-
adjust the observations in the level and trend equations. The seasonal equation updates st as a γ-
weighted combination of xt − `t−1 − bt−1 and the last relevant seasonal component st−m
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• Note that we can view xt − `t−1 − bt−1 as the result of solving for s∗ in the equation:

xt = `t−1 + bt−1 + s∗

This is like the 1-step ahead forecast equation a time t− 1, but where we replace the forecast x̂t|t−1 by
the observation xt

• Note also that we could introduce damping into (9), which is just as in (8), but do not write this out
for brevity

• Figure 2 shows an example of Holt-Winters in action, on Australian holiday travel data from HA. Its
ability to pick up (and evolve!) trend and seasonality appears impressive
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Figure 2: Forecasts on Australian holiday travel data (from HA) at 12-steps ahead, from the Holt-Winters
method.

3.1 Multiplicative seasonality
• The seasonal effect in the Holt-Winters method (9) is additive. If we look at the forecast equation, in
the first line, then we see that the seasonal component is being added to the level and trend compo-
nents in order to produce the forecast

• A version of Holt-Winters with multiplicative seasonality is also possible:

x̂t+h|t = (`t + bth)st+h−mk

`t = α
xt
st−m

+ (1− α)(`t−1 + bt−1)

bt = β(`t − `t−1) + (1− β)bt−1

st = γ
xt

`t−1 − bt−1
+ (1− γ)st−m

(10)

The parameters are again α, β ∈ [0, 1] and γ ∈ [0, 1− α]

5



• The equations in (10) are motivated and interpreted just as in (9), except that the contribution of
the seasonal component is multiplicative. We can see this in the forecast equation, in the first line:
we take the non-seasonal forecast (level and trend) and multiply it by the seasonal component

• We can view xt/(`t−1 + bt−1), in the seasonal equation, as the result of solving for s∗ in the equation:

xt = (`t−1 + bt−1)s∗

This is again like the 1-step ahead forecast equation a time t− 1, but where we replace the forecast
x̂t|t−1 by the observation xt

• In practice, the additive and multiplicative seasonal models can sometimes result in fairly similar
component estimates—this happens with the holiday travel data, for example (the next subsection
gives evidence of this). But in other problems they can result in genuine differences, so it is worth
thinking about whether the seasonal effect in the problem at hand could plausibly be multiplicative
(what might be the basis for this?), and if so, worth trying and evaluating this formulation as well

3.2 Time series decomposition
• We’ve talked about decompositions of time series at various points in the past, and touched on multi-

ple approaches for fitting them

• The Holt-Winters method, either in additive or multiplicative form, is not just a forecaster but also
provides us with a decomposition of the given time series by extracting the fitted level `t, trend bt,
and seasonal st sequences

• There is a bit of an unfortunate clash of nomenclature here: previously we talked about seasonal-
trend decompositions. And the fitted level component from Holt-Winters actually provides what we
called the trend component previously! Meanwhile, the fitted trend component from Holt-Winters
does not have a correspondence to anything we talked about previously. It reflects “where the time
series is heading”

• Figure 3 shows an example on the holiday travel data. Both the additive and multiplicative methods
return fairly similar component estimates. The seasonal pattern also appears to be unchanging over
time, which is a consequence of the fact that the estimate of γ in both models is tiny (around 0.0001
in both models, as can be seen in the R notebook)

4 ETS models
• Exponential smoothing with trend and seasonality (ETS) models are a class that includes everything
we’ve seen thus far: simple exponential smoothing, Holt’s linear trend method, Holt-Winters method
with additive or multiplicative seasonality, and all of their damped trend versions

• In fact, ETS includes more: we can also change the model to accomodate a multiplicative error com-
ponent (rather than an additive error component, as was previously introduced). This will be made
more precise when we talk about the state space representation, below

• (While mathematically possible, HA do not recommend allowing for a multiplicative trend, because
they say that it can often behave poorly in practice)

• Thus we an ETS model is written ETS(x, y, z), where

– x ∈ {A,M}

– y ∈ {N,A,Ad}

– z ∈ {N,A,M}

here N stands for “none” (no trend component or no seasonality component), A stands for “additive”,
Ad stands for “additive-damped”, and M stands for multiplicative
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Figure 3: Decomposition of the Australian holiday travel data (from HA) from the Holt-Winters method
in additive and multiplication forms.
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• So to be clear:

– ETS(A,N,N) is simple exponential smoothing

– ETS(A,A,N) is Holt’s linear trend method

– ETS(A,Ad,N) is the damped linear trend method

– ETS(A,A,A) is Holt-Winters with additive seasonality

– ETS(A,A,M) is Holt-Winters with multiplicative seasonality

• Note: HA do not recommend combining additive errors with multiplicative seasonality, saying that
this can lead to numerical instability when estimating parameters. Thus they say that ETS(A,*,M)
should generally be ditched in favor of ETS(M,*,M)

4.1 State space representation
• A useful way to represent (and think about) ETS models is what is called a state space formulation.
This gives equivalent point forecasts x̂t+h|t, but moreover provides a probabilistic framework for ETS
models, which informs us how to carry out maximum likelihood and compute prediction intervals

• We’ll start by writing ETS(A,N,N) or SES (6) in state space form. This is:

xt = `t−1 + εt

`t = `t−1 + αεt
(11)

The first line is typically called the observation equation or measurement equation, and the second is
called the state equation. We will return to state space models more generally in the last section

• In (11), and all state space formulations henceforth, each error εt is i.i.d. taken to be N(0, σ2). Thus
the joint distribution of the observations x1, . . . , xt is fully specified by (11) and we can do maximum
likelihood in order to estimate the unknown parameters: here, α and `0

• To see how (11) is equivalent to (6), we have to understand how point forecasts are generated. This
will explained in more detail later, but it is really the same story as in ARIMA: we replace past er-
rors by their residuals, and future errors by zero. Thus in (11), the state equation at time t becomes

`t = `t−1 + α(xt − `t−1)

and the observation equation at time t+ 1 gives us the forecast:

x̂t+1|t = `t + 0

Clearly, the last two equations together recreate SES as defined in (6)

• As another example, ETS(A,A,N) or Holt’s linear trend (7) in state space form is:

xt = `t−1 + bt−1 + εt

`t = `t−1 + bt−1 + αεt

bt = bt−1 + βεt

(12)

For convenience, we have redefined the product αβ (with β originally as in (7)) to be β in (12)

• As another example, ETS(M,A,N) in state space form is:

xt = (`t−1 + bt−1)(1 + εt)

`t = (`t−1 + bt−1)(1 + αεt)

bt = bt−1 + β(`t−1 + bt−1)εt

(13)

This is a nonlinear state space model, as the contribution of errors in (13) are multiplicative

• To read the details of the other state space representations, see Chapter 8.5 of HA
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4.2 Estimation and selection
• From here on out, for estimation, selection, and forecasting, the high-level contours of the story are

similar to that for ARIMA, so we will cover these topics more swiftly

• To estimate model parameters (α, β, φ, γ, `0, b0, s0, s−1, . . . , or some subset thereof), we use the state
space representation, form the likelihood—assuming normal errors in the state space representation,
and then maximize the likelihood. We could also estimate parameters by minimizing least squares,
but that is not equivalent for ETS models in general

• In R, the ETS() function in the fable package allows us to specify and fit any member in the ETS
family of models

• Selecting the “correct” ETS model (additive or multiplicative errors? presence of trend? damped
trend? seasonality? etc.?) is pretty difficult, in one sense, just like order selection in ARIMA is diffi-
cult. Here, we refer to difficulty in the sense of model identification: supposing there were one true
data generating model among the ETS state space family, it would be hard to identify it reliably

• There are automated algorithms to select an ETS model, and these are implemented in ETS(), but
you have to be careful using them. They can sometimes identify some aspects well (like the period, if
seasonality is obvious), but can also introduce a lot of variance

• We will adopt our same perspective with ARIMA, and forecasting models in general: an ETS model
is useful if it predicts well, and will appeal to time series CV to help us decide what to use

4.3 Forecasting
• Point forecasts with ETS are defined directly with their original formulations: (6), (7), (8), (9), etc.

• The state space representation provides an equivalent view, and also allows us to produce prediction
intervals. The general approach to forecasting is analogous to that in ARIMA

• Obtaining the forecast x̂t+h|t from an ETS model can be done by iterating the following steps:

1. Start with the ETS state space representation and rewrite the equation by replacing t with t+ h

2. Replace future observations (xt+k, k ≥ 1) with their forecasts, future errors (wt+k, k ≥ 1) with
zero, and past errors (wt−k, k ≥ 0) with their ETS residuals

• Obtaining prediction intervals can be done by first computing an estimate σ̂2
h of the variance of the

“h-step ahead forecast distribution” from ETS (in quotes because we have not precisely defined this,
but see Section 8.7 in HA for details and for precise formulae). Then we could use

N
(
x̂t+h|t, σ̂

2
h

)
as our model for the h-step ahead forecast distribution at time t, and compute prediction intervals
accordingly. For example, to compute a central 90% prediction interval, we would use[

x̂t+h|t − σ̂hq0.95, x̂t+h|t + σ̂hq0.95
]

where q0.95 is the 0.95 quantile of the standard normal distribution

• We could also simulate future forecast paths via the bootstrap, as implemented in the fable pack-
age’s forecast() function when bootstrap = TRUE. The idea is just as before (as in ARIMA): in
step 2, instead of replacing future errors (wt+k, k ≥ 0) by zero, we replace them by a bootstrap draw
(i.e., a uniform sample with replacement) from the empirical distribution of past residuals. Then,
post simulation, we read off sample quantiles at t+ h for a prediction interval

• Neither of the above methods (nor any traditional methods) actually guarantee coverage in practice.
We will need to run recalibration methods on top if we want long-run coverage guarantees in general,
which we’ll cover at the end of the course. These are agnostic to the base forecaster, and can be run
on top of ARIMA, ETS, or anything else
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4.4 ARIMA versus ETS
• ARIMA and ETS models bear interesting connections, and it is worth discussing their similarities

and differences

• Recall that there are 18 ETS models in total: 2 choices for the errors (A, M) × 3 choices for trend
(N, A, Ad) × 3 choices for seasonality (N, A, M)

• Interesting fact: the 6 fully additive ETS models: ETS(A,N,N), ETS(A,A,N), ETS(A,N,A), ETS(A,A,A),
ETS(A,Ad,N), and ETS(A,Ad,A), are each special cases of ARIMA models

• We showed at the end of the last lecture that ARIMA(0,1,1) was actually the same as SES. Similar
proofs are possible for the other fully additive ETS models. An important note: in each case here,
the I component in the equivalent ARIMA model is nontrivial (d 6= 0), which means that all ETS
models are nonstationary

• Meanwhile, each of the other 12 ETS models with a multiplicative component is not a special case of
ARIMA

• And lastly, some ARIMA models are stationary: precisely, ARMA models (d = 0), whereas all ETS
models are nonstationary, as just noted above

• This is all nicely summarized by Figure 4 which is taken from Chapter 9.10 of HA

Figure 4: Summary of similarities and differences between ARIMA and ETS (from HA).

• Conceptually, ARIMA and ETS are born out of different lines of motivation: ARIMA stems from
modeling auto-correlations, in either the process itself (AR) or the errors (MA), whereas ETS stems
from a modeling components of the time series (level, trend, seasonal)

• Both classes can lead to useful forecasters, and we will typically fit one or more models from each
class and use time series CV to compare
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5 State space models*
• State space models are a rich class of models which contain ARIMA and ETS models as special cases
(and many others). As a topic of study, it tends to be more popular in the engineering sciences but
is also very useful for time series. This section on state space models is an optional advanced topic,
and it is here as a resource for those who want to learn more

• We will cover the linear Gaussian state space model (this is the most basic setting, but still quite
rich; as you’d imagine it would be too much to cover this and nonlinear non-Gaussian models all in
one go). The key object is the state vector x ∈ Rd which we assume satisfies, for t = 1, 2, 3, . . . ,

xt = Fxt−1 + δt, δt ∼ N(0, Q) (14)

where the errors δt are i.i.d. over time t. Here F,Q ∈ Rd×d. We call (14) the state equation

• We don’t directly observe the state vector, but instead we observe yt ∈ Rk, called the observation
vector or measurement vector. We assume this satisfies, for t = 1, 2, 3, . . . ,

yt = Hxt + εt, εt ∼ N(0, R) (15)

where the errors εt are i.i.d. over time t. Here H ∈ Rk×d and R ∈ Rk×k. We call (15) the observation
equation or measurement equation

• For now, we will assume that the errors in between (14), (15) are independent of each other; this is
done for simplicity, because in this setting that we can explain filtering, prediction, and smoothing in
the cleanest way. Later, in order to encompass ARIMA an ETS, we will allow for correlations

• In general, all or some of F,H,Q,R will be unknown and need to be estimated. Assuming that these
are known (or we plug in estimates of them), the three basic tasks in the state space model are:

– Filtering: estimate xt using measurements up through time t, denoted x̂tt
– Prediction: estimate xt using measurements up through time t− 1, denoted x̂t−1t

– Smoothing: estimate xt using measurements up through time n, where n > t, denoted x̂nt
• A hallmark of state space models is that we are able to carry these tasks out efficiently with a se-

quential update algorithm. We will describe this next

• Before we get there, one last comment to make ist hat an extension of the state space model (14),
(15) allows us to bring in exogenous features (just like in ARIMAX). Denoting this by ut ∈ Rr, we
can generalize (14), (15) to

xt = Fxt−1 +Gut + δt, δt ∼ N(0, Q)

yt = Hxt + Jut + εt, εt ∼ N(0, R)

where now G ∈ Rr×d and J ∈ Rr×k. To be clear, ut is treated as fixed (i.e., nonrandom) in the above
state and measurement equations

• Essentially everything that we say will carry over to the exogenous feature case, but we will stick to
(14), (15) for simplicity

5.1 Filtering and prediction
• Assume x0 ∼ N(µ0,Σ0). The Kalman filter for the model (14), (15) suitably initializes x̂00 = µ0 and
P 0
0 = Σ0, and repeats the following iterations for t = 1, 2, 3, . . .

1. Compute predicted values:

x̂t−1t = Fx̂t−1t−1 (16)

P t−1
t = FP t−1

t−1F
T +Q (17)
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2. Compute the residual (often called innovation in this context) based on the latest measurement:

rt = yt −Hx̂t−1t

3. Compute the Kalman gain:

Kt = P t−1
t HT(HP t−1

t HT +R)−1

4. Compute filtered values:

x̂tt = x̂t−1t +Ktrt (18)

P t
t = (I −KtH)P t

t−1 (19)

• What is this actually doing? This filtered values can be shown to be posterior means and covari-
ances, in the sense that

x̂tt = E(xt | ys, s ≤ t)
P t
t = Cov(xt | ys, s ≤ t)

• Meanwhile, the predicted values can be shown to be posterior means and covariances when we condi-
tion on one less measurement:

x̂t−1t = E(xt | ys, s ≤ t− 1)

P t−1
t = Cov(xt | ys, s ≤ t− 1)

• Therefore the Kalman filter iterations (steps 1-4 above) are nothing more than an efficient sequential
way of computing the Bayes estimates in the model (14), (15)

5.1.1 Proof of validity

• First, we’ll do the predicted values. By definition

x̂t−1t = E(xt | ys, s ≤ t− 1)

= E(Fxt−1 + δt | ys, s ≤ t− 1)

= Fx̂t−1t−1

using independence of δt and ys, s ≤ t− 1. This verifies (16). Also

P t−1
t = Cov(xt | ys, s ≤ t− 1)

= Cov(Fxt−1 + δt | ys, s ≤ t− 1)

= FP t−1
t−1F

T

again using independence of δt and ys, s ≤ t− 1. This verifies (17)

• Next, we’ll do the fitted values. Observe

Cov(xt, rt | ys, s ≤ t− 1) = Cov(xt, yt −Hx̂t−1t | ys, s ≤ t− 1)

= Cov(xt, Hxt −Hx̂t−1t + εt | ys, s ≤ t− 1)

= P t−1
t HT

where we used independence of εt and xt conditional on ys, s ≤ t− 1 (the errors are indepdendent of
everything else), and the fact that x̂tt−1 is a constant conditional on ys, s ≤ t − 1, and thus has zero
conditional covariance with xt. This means[

xt
rt

] ∣∣∣∣ ys, s ≤ t− 1 ∼ N

([
x̂tt−1

0

]
,

[
P t−1
t P t−1

t HT

HP t−1
t HP t−1

t HT +R

])
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• Therefore

x̂tt = E(xtt | ys, s ≤ t)
= E(xtt | rt, ys, s ≤ t− 1)

= x̂tt−1 + P t−1
t HT(HP t−1

t HT +R)−1rt

= x̂tt−1 +Ktrt

with the third line following from standard conditional expectation properties of multivariate Gaus-
sians. This verifies (18)

• Similarly

P t
t = Cov(xtt | ys, s ≤ t)

= Cov(xtt | rt, ys, s ≤ t− 1)

= P t−1
t − P t−1

t HT(HP t−1
t HT +R)−1HP t−1

t

= (I −KtH)P t−1
t

with the third line following from standard conditional covariance properties of multivariate Gaus-
sians. This verifies (19)

5.2 Smoothing
• Carrying on, suppose we also want to compute Bayes estimates given more recent observations:

x̂nt = E(xt | ys, s ≤ n)

Pn
t = Cov(xt | ys, s ≤ n)

• This is possible via the Kalman smoother, which repeats the following iterations for t = n − 1, n −
2, n− 3, . . .

1. Compute the smoother matrix:
Lt = P t

tF
T(P t

t )−1

2. Compute smoothed values

x̂nt = xtt + Lt(x
n
t+1 − xtt+1)

Pn
t = P t

t + Lt(P
n
t+1 − P t

t+1)

• The proof of validity (which we skip) follows from similar inductive/recursive arguments and proper-
ties of multivariate Gaussians, as used in the Kalman filter case

5.3 Correlated errors
• Allowing for the errors between (14) and (15) to be correlated is an important extension. It first

helps to rewrite this model as

xt+1 = Fxt + δt, δt ∼ N(0, Q)

yt = Hxt + εt, εt ∼ N(0, R)

• Effectively, all that we have done is to re-index the error variable in the state equation (now δt con-
tributes to the equation for xt+1). This helps to keep the indexing simple for the next assumption,
which is that δt, εt are correlated:

Cov(δt, εt) = S

for a matrix S ∈ Rd×k. However, we still assume Cov(δs, εt) = 0 for s 6= t

13



• In the case of correlated errors, extensions of the Kalman filtering, prediction, and smoothing itera-
tions from the last two subsections can be derived. These are altogether more complicated and we
omit the details. Here are the important takeaways:

– the predictions are more complicated than in the case of uncorrelated errors; now we update
x̂tt+1 from the last predicted value x̂tt−1 (rather than the last filtered value) and this requires
keeping track of a more complicated gain matrix, which depends on S;

– given the predictions, the updates for the filtered values are exactly the same as in the uncorre-
lated case;

– given the predicted and filtered values, the updates for smoothed values are exactly the same as
in the uncorrelated case.

See Chapter 6.6 of SS for the full gory details you’d like to see them

5.4 Examples
• In what remains, we’ll establish that some example ARMA and ETS models fit the state space form,
with correlated errors. There is going to be a bit of a notation clash: previously we represented our
primary time series of interest as xt, t = 1, 2, 3, . . . but now we would like to reserve that for the
state process, and we will use yt, t = 1, 2, 3, . . . for the observed time series (which we are assuming
follows an ARMA or ETS model)

5.4.1 ARMA(1,1)

• As our first example, we show that an ARMA(1,1) model can be represented as a state space model.
Consider:

yt = φyt−1 + θwt−1 + wt

• Now consider the state space model:

xt+1 = φxt + (φ+ θ)wt

yt = xt + wt

The errors in the state and measurement equations are correlated, as Cov((φ+ θ)wt, wt) = φ+ θ

• We claim these are equivalent. Simply plugging in gives

yt = xt + wt

= φxt−1 + (φ+ θ)wt−1 + wt

= φ(xt−1 + wt−1) + θwt−1 + wt

= φyt−1 + θwt−1 + wt

5.4.2 ARMA(p,q)

• As our next example, we show that a general ARMA(p, q) model can be represented as a state space
model. Consider:

yt =

p∑
j=1

φjyt−j +

q∑
j=1

θjwt−j + wt

Assume without of generality that p = q (otherwise, pad the shorter sequence of coefficients with 0s)

• Now consider the state space model:

xt+1 = Fxt + awt

yt = Hxt + wt

14



where we set d = p (for the dimension of the state vector) and define

F =


φ1 1 0 · · · 0
φ2 0 1 · · · 0
...

φp−1 0 0 · · · 1
φp 0 0 · · · 0

 ∈ Rp×p, a =

φ1 + θ1
...

φp + θp

 ∈ Rp×1, H =
[
1 0 0 · · · 0

]
∈ R1×p

Also, the errors in the state and measurement equations are correlated, as Cov(awt, wt) = a

• To prove the equivalence between the two forms, observe:

yt = xt,1 + wt

= [Fxt−1 + wt−1]1 + wt

= φ1xt−1,1 + xt−1,2 + (φ1 + θ1)wt−1 + wt

= φ1xt−1,1 + [Fxt−2 + wt−2]2 + (φ1 + θ1)wt−1 + wt

= φ1xt−1,1 + φ2xt−2,1 + xt−2,3 + (φ2 + θ2)wt−2 + (φ1 + θ1)wt−1 + wt

...
= φ1xt−1,1 + φ2xt−2,1 + · · ·+ φpxt−p,1 + (φ1 + θ1)wt−1 + (φ2 + θ2)wt−2 + · · ·+ (φp + θp)wt−p + wt

= φ1(xt−1,1 + wt−1) + · · ·+ φp(xt−p,1 + wt−p) + θ1wt−1 + · · ·+ θpwt−p + wt

= φ1yt−1 + · · ·+ φpyt−p + θ1wt−1 + · · ·+ θpwt−p + wt

5.4.3 ETS(A,A,N)

• As our final example, we show that an ETS(A,A,N) can be represented as a state space model. We
start with the form in (12), and do some re-indexing and rearranging. Write yt for the observation in
place of xt+1 in (12), and wt for the error in place of εt+1 in (12), which gives

`t+1 = `t + bt + αwt

bt+1 = bt + βwt

yt = `t + bt + wt

• Now let xt = (`t, bt) ∈ Rd be our state vector in dimension d = 2, and define

F =

[
1 1
1 0

]
∈ R2×2, a =

[
α
β

]
∈ R2×1, H =

[
1 1

]
∈ R1×2

• Then the the second-to-last-display is equivalent to the state space model

xt+1 = Fxt + awt

yt = Hxt + wt

The errors in the state and measurement equations are correlated, as Cov(awt, wt) = a
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