
Lecture 2: Measures of Dependence and Stationarity
Introduction to Time Series, Fall 2024

Ryan Tibshirani

Related reading: Chapters 1.3–1.5 of Shumway and Stoffer (SS); Chapters 2.8–2.9 of Hyndman and Athana-
sopoulos (HA).

1 Mean and variance
• Given a sequence xt, t = 1, 2, 3, . . . , we define its mean function (this is viewed as a function of time)

by
µx,t = E(xt)

When it is unambiguous from the context which underlying sequence it refers to, we drop the first
subscript and simply denote this by µt

• Moreover, we define its variance function by

σ2
x,t = Var(xt) = E[(xt − µt)

2]

Again, when the underlying sequence should be clear from the context, we simplify notation and
denote this by σ2

t

• The mean and variance functions µt and σ2
t are handy objects, because they tell us about salient

features of the time series—the drift and spread, respectively, that we should expect over time

• However, in general, they are not enough to characterize the entire distribution of the time series.
Why? Two reasons:

1. In general, the mean and variance are not enough to characterize the marginal distribution of a
single variate xt along the sequence

2. Furthermore, they say nothing about the joint distribution of two variates xs and xt at different
times, s 6= t. (For example, do they tend to go up and down together, or do they tend to repel,
or ... ?)

The second of these (joint dependence) we will address soon when we talk about auto-covariance and
stationarity. The first (mean and variance specifying the distribution) we will revisit later when we
talk about Gaussian processes

• Before moving on though, let’s look at some examples. First, let’s consider white noise, which re-
call, refers to a sequence xt, t = 1, 2, 3, . . . of uncorrelated random variables, with zero mean, and
constant variance. Precisely,

Cov(xs, xt) = 0, for all s 6= t

E(xt) = 0, Var(xt) = σ2, for all t

So by definition (this one is kind of vacuous), we have mean function µt = 0 and variance function
σ2
t = σ2, which are constant functions (do not vary in time)

• How about a moving average of white noise, with window length 3? This is

yt =
1

3

(
xt−1 + xt + xt+1

)
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Its mean function is

µt = E(yt)

=
1

3

(
E(xt−1) + E(xt) + E(xt+1)

)
=

1

3
(0 + 0 + 0)

= 0

Its variance function is

σ2
t = Var(yt)

=
1

9

(
Var(xt−1) + Var(xt) + Var(xt+1) +

2 Cov(xt−1, xt) + 2 Cov(xt, xt+1) + 2 Cov(xt−1, xt+1)
)

=
1

9
(σ2 + σ2 + σ2 + 0 + 0 + 0)

=
1

3
σ2

So its variance is smaller than that of original sequence. In short, smoothing reduces variance

• This last example might have helped you de-rust on some basic facts about expectations and vari-
ances. Recall, for constants ai and random variables xi:

E
( n∑

i=1

aixi

)
=

n∑
i=1

aiE(xi)

Var

( n∑
i=1

aixi

)
=

n∑
i=1

a2i Var(xi) + 2
∑
i<j

aiaj Cov(xi, xj)

• The last rule can be thought of as a special case of the more general rule, for constants ai, bj , and
random variables xi, yj :

Cov

( n∑
i=1

aixi,

m∑
j=1

bjyj

)
=
∑
i,j

aibj Cov(xi, yj)

(To be clear, the sum on the right-hand side above is taken over i = 1, . . . , n and j = 1, . . . ,m)

• Ok, one last example before moving on: let’s consider a random walk with drift,

xt = δ + xt−1 + wt

for a white noise sequence wt, t = 1, 2, 3 . . . . Recall, we can equivalently write this as (assuming we
start at x0 = 0):

xt = δt+

t∑
i=1

wi

From this, we can see that the mean function is

µt = δt+

t∑
i=1

E(wi) = δt

and the variance function is

σ2
t =

t∑
i=1

Var(wi) + 2
∑
i<j

Cov(wi, wj) = σ2t

So both the mean and the variance grow over time, proportionally to t. Figure 1 plots example paths
over multiple repetitions, for you to get a sense of this
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Figure 1: Random walk without and with drift, each with 100 sample paths. The darker, thicker line in
each plot is the sample mean taken at each time point, with respect to the 100 repetitions.
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2 Covariance and correlation

2.1 Auto: one series
• The auto-covariance function associated with a time series xt, t = 1, 2, 3, . . . is defined as

γx(s, t) = Cov(xs, xt)

This is a symmetric function γx(s, t) = γx(t, s), for all s, t. Note that of course γx(t, t) = σ2
x,t, the

variance function. As before, we will drop the subscript when it is clear from the context what the
underlying sequence is, and simply write γ(s, t)

• The auto-correlation function is defined by dividing the auto-covariance function by the product of
the relevant standard deviations,

ρx(s, t) =
γx(s, t)

σx,s σx,t

which we abbreviate as ρ(s, t) when the underlying sequence is clear from the context

• By the Cauchy-Schwarz inequality, which states that

Cov(x, y) ≤
√

Var(x) Var(y)

for any random variables x, y, note that we always have

ρx(s, t) ∈ [−1, 1]

Typically the auto-correlation will lie strictly in between these limits. (What would a sequence with
auto-correlation identically equal to 1 look like? What about identically equal to −1, is that possi-
ble?)

• Broadly speaking, the auto-covariance function measures the linear dependence between variates
along the series. If a series is very smooth, then the auto-covariance function will typically be large
(and positive when s, t are close together, but it may be negative when s, t are farther apart). If a
series is choppy, then the auto-covariance function will typically be close to zero

• Recall that uncorrelatedness is not the same as independence! So we can have γx(s, t) = 0 for all s, t,
even if xt, t = 1, 2, 3, . . . are not independent random variables. However, for a Gaussian sequence,
uncorrelatedness implies independence

• Let’s return to our examples. For white noise, the auto-covariance function is identically zero, γ(s, t) =
0 for all s 6= t. Hence the same is true of the auto-correlation function

• For a moving average of white noise, the auto-covariance function generally decreases as the gap
between s and t grows. For example, for

yt =
1

3

(
xt−1 + xt + xt+1

)
we have

γ(s, t) = Cov(ys, yt)

= Cov

(
1

3

(
xs−1 + xs + xs+1

)
,

1

3

(
xt−1 + xt + xt+1

))

= σ2 ·



1/9 s = t− 2

2/9 s = t− 1

1/3 s = t

2/9 s = t+ 1

1/9 s = t+ 2

0 otherwise
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(You can go through each case carefully, and use the formula for the covariance of linear combina-
tions given previously.) The auto-correlation function simply divides this by σ2/3, since the variance
function is constant, and is hence

ρ(s, t) =



1/3 s = t− 2

2/3 s = t− 1

1 s = t

2/3 s = t+ 1

1/3 s = t+ 2

0 otherwise

• For a random walk (with or without drift), the auto-covariance function has a different structure.
Considering

xt = δt+

t∑
i=1

wi

we have

γ(s, t) = Cov(xs, xt)

= Cov

(
δs+

s∑
i=1

wi, δt+

t∑
i=1

wi

)
= σ2 min{s, t}

(To see this more clearly, consider the case where s < t and recognize that the sums above overlap
with exactly s white noise variates.) The auto-correlation function divides this by the product of the
relevant variances:

ρ(s, t) =
σ2 min{s, t}
σ
√
s · σ
√
t

=
min{s, t}√

st

Interestingly, again, we see that the auto-correlation decreases as the gap between s and t grows

• Figure 2 gives a visualization of the auto-correlation functions for the moving average and random
walk settings. The moving average auto-correlation function is a banded matrix (though it is hard
to see the band since the sequence is of total length n = 500 and most values in the auto-correlation
matrix are zero). Importantly, we can see that the same pattern persists throughout the whole ma-
trix, and all that matters is the distance to the diagonal. This reflects an important property that
we will learn soon (stationarity). Meanwhile, the random walk auto-correlation function does not
have a pattern that persists throughout, and we can see a “cone” that grows around the diagonal

2.2 Cross: two series
• The cross-covariance function associated with two time series xt, t = 1, 2, 3, . . . and yt, t = 1, 2, 3, . . .

is defined as
γxy(s, t) = Cov(xs, yt)

This is not necessarily a symmetric function, and generically γxy(s, t) 6= γxy(t, s). Note that the
cross-covariance between a time series and itself is simply its auto-covariance, i.e., γxx(t, t) = γx(t)

• The cross-correlation function is defined by diving the cross-covariance function by the product of
the relevant standard deviations,

ρxy(s, t) =
γxy(s, t)

σx,s σy,t
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Moving average Random walk

Figure 2: Heatmaps of the auto-correlation functions for the moving average and random walk examples,
for a sequence with n = 500 time points. The heatmaps are laid out in the same way that we would natu-
rally view a matrix: (s, t) = (1, 1) is the top left corner, and (s, t) = (n, n) is the bottom right (that is, s
increases along the rows, and t increases along the columns). Yellow reflects a value of zero, and darker
red reflects a larger value.

• By Cauchy-Schwarz, once again, we know that ρxy(s, t) ∈ [−1, 1]

• Figure 4 shows an example of an estimated cross-correlation function for Covid-19 cases (the first
series xs) and deaths (the second series yt) in California, which are plotted in Figure 3. We can see
that the cross-correlation is plotted as a function of “lag”, which refers to the value h = s − t, and
appears to be maximized at a lag of h = −25 or so. This makes sense, in that we expect cases to be
highly correlated with deaths several weeks later (this is also visually apparent in Figure 3)

• A bit of nomenclature: we say that cases lead deaths, since their cross-correlation is maximized at a
negative value of h, and conversely, deaths lag cases

• But wait a minute ... why have we reduced the whole cross-correlation function, which is generically
a function of two time indexes s and t, to be a function of a single number, lag, h = s− t? Because
that is really the only way it is estimable (unless we have more information than the two time series
at hand). More on this shortly, but next, we’ll cover stationarity, which will provide the foundation
for this estimation strategy in the first place

3 Stationarity

3.1 Strong
• Stationarity is an important concept in time series. There are actually two forms. The first is strong
stationarity of a time series xt, t = 1, 2, 3, . . . , defined by the property:

(xt1 , xt2 , . . . , xtk)
d
= (xt1+`, xt2+`, . . . , xtk+`), for all k ≥ 1, all t1, . . . , tk, and all `

Here d
= means equality in distribution. In other words, strong stationarity means that any collection

of variates along the series has the same joint distribution after we shift the time indices forward or
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Figure 3: Covid-19 cases and deaths, in the state of California.
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Figure 4: Cross-correlation function for Covid-19 cases and deaths in California, as plotted above. This is
estimated by the ccf() function in R.
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backwards in time

• As its name suggests, this is a very strong property, in fact, so strong that it’ll rarely be useful for
most applications. (For example, it is not even really possible to assess whether it holds given a
single time series)

• But before moving on, let’s look at some implications of strong stationarity. First, just taking k = 1,
we learn that

xs
d
= xt, for all s, t

In particular, taking the mean of each side above, we see that µs,t = µx,t, that is, the mean function
must take on a constant value, not varying with t

• Second, taking k = 2, we learn that

(xs, xt)
d
= (xs+`, xt+`), for all s, t

Therefore, taking the covariance of each side above, we see that γx(s, t) = γx(s+ `, t+ `), that is, the
auto-covariance function must be invariant to shifts, and depend only on the lag h = s− t

3.2 Weak
• The second form of stationarity is directly motivated by the implications of strong stationarity given
at the end of the last subsection. We saw that strong stationarity implies that the mean function
must be constant, and the auto-covariance function must be invariant to shifts. So why not simply
define a notion based on these two properties?

• Weak stationarity of a time series xt, t = 1, 2, 3, . . . is defined precisely in this way, by the conditions:

µx,t = µ, for all t
γx(s, t) = γx(s+ `, t+ `), for all s, t, `

Note that the second condition (take s = t) also implies that the variance function is constant:
σx,t = σ for all t

• As we have already discussed, strong stationarity implies weak stationarity, but the opposite is not
true in general (can you think of an example?). However, it is true in the special case that the series
is a Gaussian process. We’ll summarize this in the next display:

strong stationarity =⇒ weak stationarity
strong stationarity 6⇐= weak stationarity (in general)
strong stationarity ⇐= weak stationarity (for a Gaussian process)

• Because the weak form is the much more commonly-used form of stationarity, hereafter, we’ll use the
term stationary to refer to weakly stationary

• Under stationarity, we will adopt the convention of writing the auto-covariance function as a func-
tion of just one argument, the lag h = s− t:

γx(h) := γx(t, t+ h)

Here we use := to emphasize that we are defining the quantity on the left-hand side, and the value
of t on the right-hand side is arbitrary (under stationarity, any value of t will result in the same
auto-covariance)

• Note that, under stationarity, we have γx(0) = σ2, the variance (which is constant over time)

8



• Note also that, under stationarity, the auto-correlation function must depend only on the lag h = s− t,
since it is defined as ρx(s, t) = γx(s, t)/(σx,s σx,t), where the numerator can only depend on s − t,
and the denominator must be constant. Hence, under stationarity, we will similarly abbreviate the
auto-correlation function by:

ρx(h) := ρx(t, t+ h)

• Let’s return to our examples. White noise is clearly stationary—the mean function is identically zero,
the variance function is constant, and the auto-covariance is zero whenever s 6= t. A moving average
of white noise is also stationary—the mean function is again identically zero, and the auto-covariance
derived above is “symmetric around the diagonal”, i.e., only a function of the lag h = s− t, which we
rewrite below to emphasize this:

γ(h) = σ2 ·


1/9 h = ±2

2/9 h = ±1

1/3 h = 0

0 otherwise

• A random walk is not stationary ... even when the drift is zero, δ = 0. Why? For one, recall, the
variance function is non-constant: it increases over time, σ2

x,t = σ2t. For another, recall, the auto-
covariance function is not symmetric around the diagonal: it is γ(s, t) = σ2 min{s, t}

• Before leaving this section to discuss estimation, we note a generalization of stationarity called trend
stationarity : this means that xt, t = 1, 2, 3, . . . is of the form

xt = θt + wt

where θt, t = 1, 2, 3, . . . is a fixed (nonrandom) sequence and wt, t = 1, 2, 3, . . . is stationary. Intu-
itively, we think of xt as being “stationary around the trend θt”. While the mean function of such
a sequence xt need not be constant (since θt need not be constant), it is not hard to check that the
auto-covariance function satisfies

γx(s, t) = γw(s, t)

and because the right-hand side is invariant to shifts, so must be the left-hand side

4 Covariance estimation
• How do we go about estimating the auto-covariance (or auto-correlation) function from a single time

series xt, t = 1, . . . , n? Well, estimation is not really possible unless we assume stationarity

• Under this assumption, it is reasonable to consider the sample auto-covariance function, defined as

γ̂(h) =
1

n

n−h∑
t=1

(xt+h − x̄)(xt − x̄),

where x̄ = 1
n

∑n
t=1 xt is the sample mean

• We should note that the sample auto-covariance function is always well-defined and can always be
computed from data, whether or not the stationarity assumption is (approximately) true. But if
stationarity is far from being true, then the sample auto-covariance function defined above will not
be very meaningful

• Analogously, the sample auto-correlation function is defined as

ρ̂(h) =
γ̂(h)

γ̂(0)

Note that the denominator here is the sample variance

9



• The acf() function in R estimates the auto-covariance (type = "covariance") or auto-correlation
(type = "correlation") function according to the formulas given above. An example is given in
Figure 6, for the speech data that we saw in the last lecture, plotted again in Figure 5. We can see
strong patterns here in the sample auto-correlation, which makes sense, because the original time
series appears to be a sequence of repeating short signals

• The plot produced by acf(), by default, also places dotted lines at ±2/
√
n (where n is the length of

the given time series). These lines are a tool to hint at statistical significance: under some assump-
tions, for a white noise sequence, the sample auto-correlation at any finite lag will be approximately
normally distributed with mean zero and standard deviation 1/

√
n, for large n. (See Appendix A of

SS for details)

• The ccf() function in R estimates the cross-covariance or cross-correlation in a manner that is com-
pletely analogous to the formulas above (for auto-covariance or auto-correlation). These estimates
rest on a concept called joint stationarity between two time series, which you’ll explore on the home-
work. Recall, an example of estimated cross-correlation by ccf() was already given in Figure 4 for
the Covid-19 data

5 Gaussian processes
• A times series xt, t = 1, 2, 3, . . . is said to be a Gaussian process provided that

(xt1 , xt2 , . . . , xtk) has a multivariate Gaussian distribution, for all k ≥ 1, and all t1, . . . , tk

• Recall, if the random vector (xt1 , xt2 , . . . , xtk) has a multivariate Gaussian distribution, then it is
defined by a mean vector µ ∈ Rk and covariance matrix G ∈ Rk×k. We denote the associated normal
distribution by N(µ,G), and its density is (get ready for some linear algebra notation ...):

f(x) =
1√

(2π)k detG
exp

(
− 1

2
(x− µ)TG−1(x− µ)

)
Here G−1 is the inverse of the matrix G, detG is its determinant, and (x− µ)T is the transpose of the
vector x− µ. By convention we treat all vectors as column vectors. (If some of this looks foreign to
you, then you should review your linear algebra notes ... it is pretty darn hard to understand aspects
of multivariate Gaussians without linear algebra)

• For a Gaussian process, the above display describes the density of a collection (xt1 , xt2 , . . . , xtk) vari-
ates along the sequence, but importantly—even though our notation doesn’t reflect this, because
otherwise it would be too cumbersome—the mean vector µ and covariance matrix G here can de-
pend on the time points t1, . . . , tk. Note that here the mean vector µ has ith entry

µx,ti = E(xti)

and the covariance matrix G has, as the element in its ith row and jth column,

γx(ti, tj) = Cov(xti , xtj )

• Gaussian processes and weak stationarity are a special combination. If xt, t = 1, 2, 3, . . . is a weakly
stationary Gaussian process, then (by weak stationarity) the mean vector µ and covariance matrix G
associated with (xt1 , xt2 , . . . , xtk) are the same as those associated with (xt1+`, xt2+`, . . . , xtk+`), for
any `. But by Gaussianity this actually implies that

(xt1 , xt2 , . . . , xtk)
d
= (xt1+`, xt2+`, . . . , xtk+`),

for any `, which implies strong stationarity. This proves the claim we made above, that for Gaussian
processes, weak and strong stationarity are the same concept
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Figure 5: Vocal response data measured from the syllable “aaa · · · hhh” (from SS).
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Figure 6: Auto-correlation function for the speech data, as plotted above. This is estimated by the acf()
function in R.
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