
Lecture 1: Characteristics and Examples of Time Series Data
Introduction to Time Series, Fall 2024

Ryan Tibshirani

Related reading: Chapters 1.1–1.2 of Shumway and Stoffer (SS); Chapters 2.3 and 3.2–3.6 of Hyndman
and Athanasopoulos (HA).

1 Course stuff
• Instructor: Ryan Tibshirani

• GSI: Tiffany Ding

• Reader: Theo Pan

• Course website: https://stat153.berkeley.edu/fall-2024/

• Everything will be up on the website: lecture notes, homework assignments, syllabus, schedule, links
to bCourses, Ed discussion, etc.

• Please email the GSI with any issues first. The Instructor will be looped in only as-needed

• Please call me Ryan, Professor Tibshirani, or Professor Tibs. Please do not call me Professor

• There will be 5 homework assignments, 1 midterm, and 1 final exam. Syllabus gives details on grad-
ing breakdown

• The homeworks will be due about every 2 weeks, with spacing for the midterm and the final. Sched-
ule on website gives projected dates

• Probability at the level of Stat 134 or Data 140 is required as a pre-req. Statistics at the level of Stat
133 and 135 is recommend and may be taken concurrently

• We will also assume basic level of fluency in R programming. You will need to have R installed, and
it will be very helpful for you to have RStudio installed

• Read the course website or the syllabus for the projected list of topics that we will cover

• Read the syllabus for late policy for homeworks, and collaboration policy

• Do not copy or cheat. It will not end well and dealing with it is really not fun for anyone involved

• Ok, now on to the fun stuff!

2 Time series intro
• What fields do time series data occur in? Economics, social science, epidemiology, medicine, neuro-

science, language modeling, ...

– Economics: stock prices or stock returns over time

– Social science: birth rates or school acceptance rates over time

– Epidemiology: Covid-19 cases or Influenza hospitalizations over time

– Medicine: blood antibody levels over time (IgA, IgG, IgM, ...)

– Neuroscience: brain-wave patterns over time, under different conditions
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– Language modeling: word or token distributions over time

• What distinguishes time series from traditional (batch) data problems?

The data are not i.i.d. (independent and identically distributed). There is correlation in-
duced by the fact that we are making observations over time.

• Ignoring these correlations is going to be problematic. Enter time series analysis, models, and fore-
casts

• Worth mentioning at the outset that there are two view in classical time series analysis: time domain
and frequency domain (also called spectral) approaches.

– Time domain: language/tools for studying lagged relationships—e.g., what happened yesterday
will influence today and tomorrow

– Frequency domain: language/tools for studying study seasonality and cycles

• These are not mutually exclusive. We will mostly focus on the former (time domain approaches), but
will briefly introduce the latter (frequency domain approaches) a bit later in the course

• We will also use a significant chunk of the course to emphasize the predictive perspective: forecast-
ing, practical considerations therein, and important related topics like calibration and ensembling

3 Time series examples
• We’ll step through the following examples, in Figures 1–7, and discuss each, including why the data

cannot really be i.i.d.
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Figure 1: Johnson & Johnson quarterly earnings per share (from SS).
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Figure 2: Yearly average global temperature deviations from the 1951–1980 average (from SS).
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Figure 3: Vocal response data measured from the syllable “aaa · · · hhh” (from SS).
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Figure 4: Blood oxygenation-level dependent (BOLD) signal intensity in regions of the cortex (from SS).
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Figure 5: BOLD signal intensity in regions of the thalamus and cerebellum (from SS).
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Figure 6: Reported Covid-19 cases per 100k people in 6 large US states.
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Figure 7: Reported Covid-19 deaths per 100k people in 6 large US states.
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4 White noise
• The term white noise is used a lot in time series in related fields. It simply refers to a sequence xt,
t = 1, 2, 3, . . . of uncorrelated random variables, with zero mean, and constant variance. Precisely,

Cov(xs, xt) = 0, for all s 6= t

E(xt) = 0, Var(xt) = σ2, for all t

• (Recall ... for random variables x, y, their covariance is

Cov(x, y) = E
[
(x− E[x])(y − E[y])

]
and Cov(x, x) = Var(x). The correlation between x, y is

Cor(x, y) =
Cov(x, y)√

Var(x)
√
Var(y)

Therefore zero correlation and zero covariance are equivalent properties)

• A stronger property than white noise is i.i.d. white noise, that is, a sequence of white noise whose
elements are also i.i.d.

• Why is this stronger? First, the distributions of the elements in a white noise sequence do not need
to be the same—they only need to have the same first two moments (mean and variance). Second,
white noise requires only zero correlation, not independence

• (Can you give an example of uncorrelated but not independent random variables?)

• An even stronger property is Gaussian white noise, that is, a sequence of white noise whose elements
are also jointly Gaussian distributed

• Why is this stronger than i.i.d. white noise? Because if two Gaussians have equal mean and variance,
then they are the same distribution; and, for Gaussians, zero correlation implies independence

• To summarize,

{Gaussian white noise sequences} ⊆ {i.i.d. white noise sequences} ⊆ {white noise sequences}

• A Gaussian white noise sequence is plotted below, in Figure 8. Do any of the time series examples
above look like white noise? No. White noise is not a great model for time series data, which typi-
cally has both trends (nonconstant mean and variance) and dependence (nonzero correlation). But it
is an important concept and will serve as a building block for more complex models

5 Linear filtering
• Another important concept in time series is filtering. fields. A linear filter is just the result of per-
forming a moving linear combination of a series xt, t = 1, 2, 3, . . . , with given weights. (Nonlinear
filters take nonlinear combinations and we won’t talk about them)

• The simplest and most common type of linear filter is a moving average. For example, a moving
average, that is centered around lag 0, of window length 3, is

yt =
1

3

(
xt−1 + xt + xt+1

)
In principle, we could center the moving average wherever we want. But the term moving average
(without further specification) usually means that we center it at lag 0
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Figure 8: Gaussian white noise.

• When we center the moving average so that its right endpoint is at time t, ensuring we only average
past values, this is called a trailing average. For example, a trailing average of length 3 is

yt =
1

3

(
xt−2 + xt−1 + xt

)
The Covid-19 data plotted above (Figures 6 and 7) was actually filtered with a 7-day trailing average

• A general linear filter takes the form

yt =

∞∑
i=−∞

aixt−i

for constants ai, where typically only finitely many are nonzero. For example, the second to last
example took a−1 = a0 = a1 = 1/3, and the last example took a0 = a1 = a2 = 1/3

• Linear filters provide a form of smoothing for time series, which we’ll revisit briefly later in the lec-
ture, and then in more detail in a future week

6 Autoregression
• An autoregressive process is one that takes the form

xt =

p∑
i=1

φixt−i + wt

for coefficients φ1, . . . , φp and errors wt

• Typically we assume that the errors are a white noise sequence
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Figure 9: Random walk without and with drift.

• The value of p is called the order of the autoregressive process, and the abbreviation AR(p) is com-
mon. So, for example, AR(3) means an autoregressive process with lag 3: each value in the sequence
depends on the last 3 values

• The simplest autoregressive process is AR(1), with coefficient φ1 = 1: this is

xt = xt−1 + wt

also known as a random walk

• Random walks may seem very simple and trivial at first but actually they and simple generalizations
are pretty fascinating, and important

• For example, did you know that a random walk in 1 and 2 dimensions is recurrent (returns to where
it started—say, the origin—infinitely often with probability 1), but in 3 dimensions and higher it is
transient (returns to the origin infinitely often with probability 0)

• (And did you know that Larry Brown proved in 19711 that this last fact is equivalent in some precise
sense to Stein’s paradox: that the MLE in a normal means model is admissible in dimensions 1 and
2, and inadmissible in dimensions 3 and higher??)

• You could also say that random walks were the beginning of what made Google the giant they are
today (the “billion dollar eigenvector”)

• Ok, back to the main story, a random walk with drift takes the form

xt = δ + xt−1 + wt

for some δ > 0. Figure 9 plots examples of random walks with and without drift
1Larry Brown (1971), “Admissible Estimators, Recurrent Diffusions, and Insoluble Boundary Value Problems”
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• By unraveling the last iteration, we can write a random walk with drift equivalently as (assuming we
start at x0 = 0):

xt = δt+

t∑
i=1

wi

Think: what happens to the mean and variance of this as t grows?

7 Signal plus noise
• A useful general time series model is called the signal plus noise model, of the form

xt = θt + wt

where the errors et, t = 1, 2, 3, . . . may be white noise or may be correlated over time

• The problem of estimating the signal θt, t = 1, 2, 3, . . . is of great interest in many applications

• It is common in time series to think about decompositions for the signal sequence, into a trend ut
and seasonal components st:

θt = ut + st

• The seasonal component st has a regular/periodic behavior for some fixed period. For example:

– Routine doctor’s office visits dip on weekends (weekly period)

– Gambling goes up at the beginning of each month (monthly period)

– Chocolate purchases go up on and around Valentine’s day (yearly period)

• The trend component ut is not regular, and is typically not assumed to be linear or to have any par-
ticular parametric form; it is typically estimated nonparametrically using some kind of smoother—
more on this later in the course

• (Some authors even further decompose the trend into two components: proper trend and cycle. The
former is monotone and the latter has a cyclic behavior but without a fixed period. We don’t gener-
ally find this a useful distinction and won’t really pursue this ... but it may be good to know about
in case you hear people, particularly economists, mentioning: trend, seasonal, and cyclic components
separately)

• Economists and official statistics agencies (like the US Census Bureau) care a lot about decompo-
sitions into trend and seasonal components ... there are various methods for doing so that we may
cover later in the course: what is considered the “classical” decomposition, but also X-11 (developed
by the US Census Bureau and Statistics Canada), SEATS (developed by the Bank of Spain), and
STL (developed by academics at the University of Michigan and Bell Labs)

• Many consider STL to be the most general and robust method for decomposition. Figure 10 gives an
example applied to US retail employment data
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Figure 10: STL decomposition of US retail employment data (from HA).
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