
Lecture 6: Autoregressive Integrated Moving Average Models
Introduction to Time Series, Fall 2024

Ryan Tibshirani

Related reading: Chapters 3.1, 3.3, and 3.6 in Shumway and Stoffer (SS); Chapters 9.1–9.5 and 9.8–9.9 of
Hyndman and Athanasopoulos (HA). More advanced parts (which we will brush over) are marked with *.

1 AR models
• The autoregressive (AR) model is one of the foundational legs of ARIMA models, which we’ll cover
bit by bit in this lecture. (Recall, you’ve already learned about AR models, which were introduced
all the way back in our first lecture)

• Precisely, an AR model of order p ≥ 0, denoted AR(p), is of the form

xt =

p∑
j=1

φjxt−j + wt (1)

where wt, t = 0,±1,±2,±3, . . . is a white noise sequence. Note that we allow the time index to be
negative here (we extend time back to −∞), which will useful in what follows

• The coefficients φ1, . . . , φp in (1) are fixed (nonrandom), and we assume φp 6= 0 (otherwise the order
here would effectively be less than p). Note that in (1), we have E(xt) = 0 for all t

• If we wanted to allow for a nonzero but constant mean, then we could add an intercept to the model
in (1). We’ll omit this for simplicity in this lecture

• A useful tool for expressing and working with AR models is the backshift operator : this is an opera-
tor we denote by B that takes a given time series and shifts it back in time by one index,

Bxt = xt−1

• We can extend this to powers, as in B2xt = BBxt = xt−2, and so on, thus

Bkxt = xt−k

• Returning to (1), note now that we can rewrite this as

xt − φ1xt−1 − φ2 − xt−2 − · · · − φpxt−p = wt

or in other words, using backshift notation(
1− φ1B − φ2B2 − · · · − φpBp

)
xt = wt (2)

• Hence (2) is just a compact way to represent the AR(p) model (1) using the backshift operator B.
Often, authors will write this model even more compactly as

φ(B)xt = wt (3)

where φ(B) = 1− φ1B − φ2B2 − · · · − φpBp is called the autoregressive operator of order p, associated
with the coefficients φ1, . . . , φp

• Figure 1 shows two simple examples of AR processes

1

AR(1), phi = +0.9

0 20 40 60 80 100

−
4

0
2

4
6

AR(1), phi = −0.9

0 20 40 60 80 100

−
6

−
2

2
4

6

Figure 1: Two examples of AR(1) processes, with φ = ±0.9.

1.1 AR(1): auto-covariance and stationarity
• A key question for us will be: under what conditions does the AR model in (1), or equivalently (3),
define a stationary process?

• The answer will turn out to be fairly sophisticated, but we can glean some intuition by starting with
the AR(1) case:

xt = φxt−1 + wt (4)

• Note that a random walk is the special case with φ = 1. We already know (from previous lectures)
that this is nonstationary, so certainly (4) cannot be stationary in general, regardless of φ

• Unraveling the iterations, we get

xt = φ2xt−2 + φwt−1 + wt

= φ3xt−3 + φ2wt−2 + φwt−1 + wt

...

= φkxt−k +

k∑
j=0

φjwt−j

• If |φ| < 1, then we can send k →∞ in the last display to get

xt =

∞∑
j=0

φjwt−j (5)

This is called the stationary representation of the AR(1) process (4)

2

• Why is it called this? We can compute the auto-covariance function, writing σ2 = Var(wt) for the
noise variance, as

Cov(xt, xt+h) = Cov

(∞∑
j=0

φjwt−j ,

∞∑
`=0

φ`wt+h−`

)

=

∞∑
j,`=0

φjφ` Cov(wt−j , wt+h−`)

=

∞∑
j=0

φjφj+hσ2

= σ2φh
∞∑
j=0

φ2j

= σ2 φh

1− φ2
(6)

where we used the fact that
∑∞
j=0 b

j = 1/(1− b) for |b| < 1. Since the auto-covariance in the last line
only depends on h, we can see that the AR(1) process is indeed stationary

• To reiterate, the representation (5), and the auto-covariance calculation just given, would have not
been possible unless |φ| < 1. This condition is required in order for the AR(1) process to have a
stationary representation. We will see later that we can generalize this to a condition that applies to
an AR(p), yielding an analogous conclusion. The conclusion we will be looking for is explained next

1.2 Causality
• Now we will introduce a concept called causality, which generalizes what we just saw falls out of an
AR(1) when |φ| < 1. This is a slightly unfortunate bit of nomenclature that nonetheless seems to be
common in the time series literature. It has really nothing to do with causality used in the broader
sense in statistics. We will ... somewhat begrudgingly ... stick with the standard nomenclature in
time series here

• We say that a series xt, t = 0,±1,±2,±3, . . . is causal provided that it can be written in the form

xt =

∞∑
j=0

ψjwt−j (7)

for a white noise sequence wt, t = 0,±1,±2,±3, . . . , and coefficients such that
∑∞
j=0 |ψj | <∞

• You should think of this as a generalization of (5), where we allow for arbitrary coefficients ψ0, ψ1, ψ2, . . . ,
subject to an absolute summability condition

• It is straightforward to check that causality actually implies stationarity: we can just compute the
auto-covariance function in (7), similar to the above calculation:

Cov(xt, xt+h) = Cov

(∞∑
j=0

ψjwt−j ,

∞∑
`=0

ψ`wt+h−`

)

=

∞∑
j,`=0

ψjψ` Cov(wt−j , wt+h−`)

= σ2
∞∑
j=0

ψjψj+h

The summability condition ensures that these calculations are well-defined and that the last display
is finite. Since this only depends on h, we can see that the process is indeed stationary

3

• Thus, to emphasize, causality actually tells us more than stationary: it is stationary and a represen-
tation as a linear filter of past white noise variates, with summable coefficients

• Note that when ψj = φj , the summability condition
∑∞
j=0 |ψj | <∞ is true if and only if |φ| < 1.

Hence what we actually proved above for AR(1) was that it is causal if and only if |φ| < 1. And it is
this condition—for causality—that we will generalize to AR(p) models, and beyond

2 MA models
• A moving average (MA) model is “dual”, in a colloquial sense, to the AR model. Instead of having xt
evolve according to a linear combination of the recent past, the errors in the model evolve according
to a linear combination of white noise

• Precisely, an MA model of order q ≥ 0, denoted MA(q), is of the form

xt = wt +

q∑
j=1

θjwt−j (8)

where wt, t = 0,±1,±2,±3, . . . is a white noise sequence

• The coefficients θ1, . . . , θq in (8) are fixed (nonrandom), and we assume θq 6= 0 (otherwise the order
here would effectively be less than q). Note that in (8), we have E(xt) = 0 for all t

• Again, we can rewrite (8), using backshift notation, as

xt =
(

1 + θ1B + θ2B
2 + · · ·+ θqB

q
)
wt (9)

• Often, authors will write (9) even more compactly as

xt = θ(B)wt (10)

where θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q is called the moving average operator of order q, associated
with the coefficients θ1, . . . , θq

• Figure 2 shows two simple examples of MA processes

2.1 Stationarity
• Unlike AR processes, an MA process (8) is stationary for any values of the parameters θ1, . . . , θq

• To check this, we compute the auto-covariance function using a similar calculation to those we’ve
done before, writing θ0 = 1 for convenience,

Cov(xt, xt+h) = Cov

(q∑
j=0

θjwt−j ,

q∑
`=0

θ`wt+h−`

)

=

q∑
j,`=0

θjθ` Cov(wt−j , wt+h−`)

=
∑

j : 0≤j,j+h≤q

θjθj+hσ
2 (11)

Since this only depends on h, we can see that the process is indeed stationary

• The similarity in these calculations brings us to emphasize the following connection: an AR(1) model
with |φ| < 1 is also a particular infinite-order MA model, as we saw in the stationary representation
(5). We will see later that there are more general connections to be made

4

MA(1), phi = +0.9

0 20 40 60 80 100

−
3

−
1

1
2

MA(1), phi = −0.9

0 20 40 60 80 100

−
4

0
2

4

Figure 2: Two examples of MA(1) processes, with θ = ±0.9.

2.2 MA(1): issues with non-uniqueness
• Consider the MA(1) model:

xt = wt + θwt−1 (12)

• According to (11), we can compute its auto-covariance simply (recalling θ0 = 1) as

γx(h) =

(1 + θ2)σ2 h = 0

θσ2 |h| = 1

0 |h| > 1

(13)

• The corresponding auto-correlation function is thus

ρ(h) =

1 h = 0
θ

1+θ2 |h| = 1

0 |h| > 1

• If we look carefully, then we can see a problem lurking here: the auto-correlation function is un-
changed if we replace θ by 1/θ

• And in fact, the auto-covariance function (13) is unchanged if we replace θ and σ2 with 1/θ and
σ2θ2; e.g., try θ = 5 and σ2 = 1, and θ = 1/5 and σ2 = 25, you’ll find that the auto-covariance
function is the same in both cases

• This is not good because it means we cannot detect the difference in an MA(1) model with parame-
ter θ and normal noise with variance σ2 from another MA(1) model with parameter 1/θ and normal
noise with variance σ2θ2

5

• In other words, there is some non-uniqueness or redundancy in the parametrization—different choices
of parameters will actually lead to the same behavior in the model at the end

• In the MA(1) case, the convention is to simply choose the parametrization with |θ| < 1. Note that
we can write

wt = −θwt−1 + xt

which is like an AR(1) process with the roles of xt and wt reversed. Thus by the same arguments
that led to (5), when |θ| < 1, we now have

wt =

∞∑
j=0

(−θ)jxt−j (14)

This is called the invertible representation of the MA(1) process (12)

• We will see soon that we can generalize this to a condition which applies to a general MA(q), yield-
ing an analogous conclusion. The conclusion we will be looking for is explained next

2.3 Invertibility
• Before we turn to ARMA models, we define one last concept called invertibility, which generalizes
what we just saw for MA(1) when |θ| < 1

• We say that a series xt, t = 0,±1,±2,±3, . . . is invertible provided that it can be written in the form

wt =

∞∑
j=0

πjxt−j (15)

for a white noise sequence wt, t = 0,±1,±2,±3, . . . , and coefficients such that
∑∞
j=0 |πj | <∞, where

we set π0 = 1

• You should think of this as a generalization of (14), where we allow for arbitrary coefficients π1, π2, . . . ,
subject to an absolute summability condition

• And of course, note how invertibility (15) is kind of an opposite condition to causality (7)

3 ARMA models
• AR and MA models have complementary characteristics. The auto-covariance of an AR model gen-
erally decays away from h = 0, whereas the auto-covariance of an MA process has finite support—in
other words, at a certain lag, the variates along an MA sequence are completely uncorrelated. You
can go back and compare (6) and (13) for the AR(1) and MA(1) models

• (The spectral perspective, by the way, provides another nice way of viewing these complementary
characteristics. In the spectral domain, the story is somewhat flipped: the spectral density of an MA
process generally decays away from ω = 0, whereas that for an AR process can be much more locally
concentrated around particular frequencies; recall our examples from the last lecture)

• Sure, there is some duplicity in representation here, as we will see—we can write some AR models
as infinite-order MA models, and some MA models as infinite-order AR models. But that’s OK! We
can take the most salient features represented by each model, and combine them to get a simple
model formulation exhibiting both sets of features, simultaneously. This is exactly what an ARMA
model does

• Precisely, an ARMA model of orders p, q ≥ 0, denoted ARMA(p, q), is of the form

xt =

p∑
j=1

φjxt−j +

q∑
j=0

θjwt−j (16)

where wt, t = 0,±1,±2,±3, . . . is a white noise sequence

6

• The coefficients φ1, . . . , φp, θ0, . . . , θq in (16) are fixed (nonrandom), and we assume φp, θq 6= 0, and
we set θ0 = 1. Note that in (16), we have E(xt) = 0 for all t

• As before, we can represent an ARMA model more compactly using backshift notation, rewriting
(16) as (

1− φ1B − φ2B2 − · · · − φpBp
)
xt =

(
1 + θ1B + θ2B

2 + · · ·+ θqB
q
)
wt (17)

• Often, authors will write (17) even more compactly as

φ(B)xt = θ(B)wt (18)

where φ(B) = 1− φ1B − φ2B2 − · · · − φpBp and θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q are the AR and
MA operators, as before

3.1 Parameter redundancy*
• For ARMA models, there is an issue of parameter redundancy, just like there are for MA models. If
η(B) is any (invertible) operator, then we can transform (18) by applying η(B) on both sides,

η(B)φ(B)xt = η(B)θ(B)wt

which may look like a different model, but the dynamics are entirely the same

• As an example, consider white noise xt = wt, and multiply both sides by η(B) = 1−B/2. This gives:

xt =
1

2
xt−1 + wt −

1

2
wt−1

which looks like an ARMA(1,1) model, but it is nothing else that white noise!

• How do we resolve this issue? Doing so requires introducing another concept. The AR and MA poly-
nomials associated with the ARMA process (16) are

φ(z) = 1− φ1z − φ2z2 − · · · − φpzp (19)

θ(z) = 1 + θ1z + θ2z
2 + · · ·+ θqz

q (20)

respectively. To be clear, these are polynomials over complex numbers z ∈ C. (Note that these are
just what we get by taking the AR and MA operators, and replacing the backshift operator B by a
complex argument z)

• As it turns out, several important properties of ARMA models can be derived by placing conditions
on the AR and MA polynomials. Here we’ll see the first one, to deal with parameter redundancy:
when we speak of an ARMA model, we implicitly assume that the AR and MA polynomials φ(z) and
θ(z), in (19) and (20), have no common factors. This rules out a case like

xt =
1

2
xt−1 + wt −

1

2
wt−1

because the polynomials each have 1− z/2 as a common factor. Hence we will not even classify the
above as an ARMA(1,1) model

3.2 Causality and invertibility*
• Now we learn about two more conditions on the AR and MA polynomials that imply important
general properties of the underlying ARMA process, and generalize calculations we saw earlier for
AR(1) and MA(1) models

• Before we describe these, we recall the following terminology: for a polynomial P (z) =
∑k
j=0 ajz

j ,
we say that z is a root of P provided P (z) = 0

7

• And we say that a point z ∈ C lies outside of the unit circle (in the complex plane C) provided that
|z| > 1, where |z| is the complex modulus of z (recall |z|2 = Re{z}2 + Im{z}2)

• The first property: the ARMA process (16) has a causal representation (7) if and only if all roots
of the AR polynomial (19) lie outside of the unit circle. The coefficients ψ0, ψ1, ψ2, . . . in the causal
representation can be determined by solving

ψ(z) = φ(z)−1θ(z) ⇐⇒
∞∑
j=0

ψjz
j =

1 + θ1z + θ2z
2 + · · ·+ θqz

q

1− φ1z − φ2z2 − · · · − φpzp
, for |z| < 1

• The second property: the ARMA process (16) is invertible (15) if and only if all roots of the MA
polynomial (20) lie outside of the unit circle. The coefficients π1, π2, . . . in the invertible representa-
tion can be determined by solving

π(z) = θ(z)−1φ(z) ⇐⇒
∞∑
j=0

πjz
j =

1− φ1z − φ2z2 − · · · − φpzp

1 + θ1z + θ2z2 + · · ·+ θqzq
, for |z| < 1

• (As an aside, you can see that parameter redundancy issues would not affect the causal and invert-
ible representations, as they shouldn’t, because any common factors in φ(z) and θ(z) would cancel in
their ratios which determine the coefficients in the causal and invertible expansions)

• Interestingly, these results can also be interpreted as follows:

– An AR(q) process, such that the roots of φ lie outside the unit circle, can also be written as an
MA(∞) process (this is what causality (7) means)

– An MA(q) process, such that the roots of θ lie outside the unit circle, can also be written as an
AR(∞) process (this is what invertibility (15) means, as it says xt = −

∑∞
j=1 πjxt−j + wt)

• We won’t cover the proofs of these properties or go into further details about them. But you will
see several hints of their significance (what the causal and invertible representations allow us to do)
in what follows. At a high-level, they are worth knowing because they are considered foundational
results for ARMA modeling—just like it is worth knowing foundations for regression modeling, and
so on. You can refer to Appendix B.2 of SS for proofs, or read more in Chapter 3 of SS

• Also, recall that causality implies stationarity, so what we have just learned is the general result that
renders an ARMA(p, q) process stationary

• Finally, as a summary, here are three equivalent ways to represent a causal, invertible ARMA(p, q)
model:

φ(B)xt = θ(B)wt

xt = ψ(B)wt, for ψ(B) = φ(B)−1θ(B)

π(B)xt = wt, for π(B) = θ(B)−1φ(B)

3.3 Auto-covariance*
• The auto-covariance for an MA(q) model was already given in (11). We can see that it is zero when
|h| > q: this is a signature structure of the MA(q) model

• The auto-covariance for a causal AR(1) model was given in (6). We can see that it decays away from
h = 0: this is a signature structure of AR model

• What does the auto-covariance look like for a general causal AR(p) model? And how about a general
causal ARMA(p, q) model?

• The answer is much more complicated, but still possible to characterize precisely. We’ll do it first for
an AR(p) model, and then look at an ARMA(p, q) model, which will have an analogous behavior

8

• For an AR(p) model (1), assumed causal (i.e., all roots of φ(z) are outside of the unit circle), we can
focus on the auto-covariance at lags h ≥ 0 (without a loss of generality, because γx is symmetric
around zero),

Cov(xt, xt+h) =

p∑
j=1

φj Cov(xt, xt+h−j) + Cov(xt, wt+h)

• The last term on the right-hand side zero for h > 0; recall, xt is a causal process, and only depends
on white noise in the past. On the other hand, when h = 0, writing xt =

∑∞
j=0 ψjwt−j ,

Cov(xt, wt) =

∞∑
j=0

ψj Cov(wt−j , wt) = σ2ψ0

• Combining the last two displays, we learn that the auto-covariance function satisfies

γx(h)−
p∑
j=1

φjγx(h− j) = 0, h > 0

γx(0)−
p∑
j=1

φjγx(−j) = σ2ψ0,

• This is called a difference equation of order p for the auto-covariance function γx. Some simple differ-
ence equations can be solved explicitly without complicated mathematics, but to solve a difference
equation in general requires knowing something (again) about the roots of a certain complex poly-
nomial associated with the difference equation, when it is represented in operator notation. You can
read Chapter 3.2 of SS for an introduction to the theory of difference equations

• For an AR(p) model, it turns out we can solve the difference equation in the last display and get

γx(h) = P1(h)z−h1 + · · ·+ Pr(h)z−hr (21)

where each Pj is a polynomial, and each zj is a root of the AR polynomial φ. Because each |zj | > 1
(all roots lie outside the unit circle), we see that the auto-covariance function will decay to zero as
h → ∞. In the case that some roots are complex, then what will actually happen is that the auto-
covariance will dampen to zero but in doing so oscillate in a sinusoidal fashion

• Now what about an ARMA(p, q) model (16), assumed causal? Similarly, we can focus on the auto-
covariance a lags h ≥ 0,

Cov(xt, xt+h) =

p∑
j=1

φj Cov(xt, xt+h−j) +

q∑
j=0

θj Cov(xt, wt+h−j)

• The last term on the right-hand side zero for h > q, whereas when h ≤ q, writing xt =
∑∞
`=0 ψ`wt−`,

we see that for j ≥ h,

Cov(xt, wt+h−j) =

∞∑
`=0

ψ` Cov(wt−`, wt+h−j) = σ2ψj−h

• Combining the last two displays, we learn that the auto-covariance function satisfies

γx(h)−
p∑
j=1

φjγx(h− j) = 0, h > q

γx(h)−
p∑
j=1

φjγx(h− j) = σ2

q∑
j=h

ψj−h, h ≤ q

9

• This is again a difference equation of order p that determines γx, but the boundary condition (what
happens when h ≤ q) is more complicated. Nonetheless, the solution is still the form (21), and the
qualitative behavior is still the same as in the AR(p) case

• Figure 3, top row, shows sample auto-correlation functions for simple MA and AR models

5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
C

F
Series x1

AR(2)

5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
C

F

Series x2

MA(3)

5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

PA
C

F

Series x1

AR(2)

5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

PA
C

F

Series x2

MA(3)

Figure 3: Top row: sample auto-correlation functions for data from AR(2) and MA(3) models. Bottom
row: sample partial auto-correlation functions for these same data.

3.4 Partial auto-covariance
• The auto-covariance function for an MA model provides a considerable amount of information that
will help identify its structure: since it is zero for lags h > q, if we were to compute a sample version
based on data, then by seeing where the sample auto-correlation “cuts off”, we could roughly identify
the order q of the underlying MA process (see top right of Figure 3 again)

• For an AR (or ARMA) model, this is not the case. As we saw from (21), the auto-covariance decays
to zero, but this tells us little about the AR order of dependence p (see also top left of Figure 3).
Thus it is worth pursuing a type of modified correlation function for the AR model that behaves like
the auto-correlation does for the MA model

• Such a modification will be given to us by the partial auto-correlation function. In general, the par-
tial correlation between random variables X,Y given Z is denoted ρXY |Z and defined as

ρXY |Y = Cor(X − X̂, Y − Ŷ), where

X̂ is the linear regression of X on Z, and

Ŷ is the linear regression of Y on Z

Here, and in what follows, by “linear regression” we mean regression in the population sense, so that
precisely X̂ = ZT Cov(Z)−1E(ZX) and Ŷ = ZT Cov(Z)−1E(ZY)

10

• Said differently, the partial correlation of two random variables given Z is the correlation after we
remove (“partial out”) the linear dependence of each random variable on Z

• (Note that when X,Y, Z are jointly normal, then this definition coincides with conditional correla-
tion: ρXY |Z = Cor(X,Y |Z), but not in general)

• We are now ready to define the partial auto-correlation function for a stationary time series xt, t =
0,±1,±2,±3, . . . , denoted ϕx(h) at a lag h. Without a loss of generality we will only define it for
h ≥ 0, since it will be symmetric around zero (due to stationarity). First, at lag h = 0 or h = 1, we
simply define:

ϕx(0) = 1

ϕx(1) = Cor(xt, xt+1)

Next, at all lags h ≥ 2, we define:

ϕx(h) = Cor(xt − x̂t, xt+h − x̂t+h), where
x̂t is the linear regression of xt on xt+1, . . . , xt+h−1, and
x̂t+h is the linear regression of xt+h on xt+1, . . . , xt+h−1

• To best see the effect of this definition we can go straight back to the causal AR(p) model. When
h > p, it can be shown that the (population) linear regression x̂t+h, of xt+h on xt+1, . . . , xt+h−1, is

x̂t+h =

p∑
j=1

φjxt+h−j

Thus xt+h − x̂t+h = xt+h −
∑p
j=1 φjxt+h−j = wt+h, and the partial auto-correlation is

ϕx(h) = Cor(xt − x̂t, wt+h) = 0

because causality implies that xt can only depend on white noise through time t, and x̂t can only
depend on white noise through time t+ h− 1

• That is, the partial auto-correlation function for an AR(p) model is exactly zero at all lags h > p

• Figure 3, bottom row, shows sample partial auto-correlation functions for AR and MA models

• The table below provides a summary of the behavior of the auto-correlation function (ACF) and the
partial auto-correlation function (PACF) for causal AR(p) and invertible MA(q) models. By “tails
off” we mean decays to zero as h→∞ without dropping to zero exactly, and by “cuts off” we mean
drops to zero at a given finite lag h

AR(p) MA(q) ARMA(p, q)
ACF tails off cuts off at lag q tails off
PACF cuts off at lag p tails off tails off

• The fact that the partial auto-correlation function for an invertible MA(q) model “tails off” was not
derived in these notes, but you can read more in Section 3.3 of SS if you are curious. Same with the
behavior of a causal, invertible ARMA(p, q)

3.5 Estimation and selection
• Estimation in an ARMA(p, q) model—estimating the coefficients φ1, . . . , φp, θ1, . . . θq in (16)—is in

general fairly complicated. Much more so than in linear regression

• Estimation is usually performed by maximum likelihood (assuming Gaussian errors), but there are
many other (nonequivalent) approaches, such as the method of moments. Maximum likelihood is
no longer a simple least squares minimization (as it is for regression) over a linear parameterization.
There are various approaches, typically iterative, for carrying out maximum likelihood, and different
approaches will give different answers

11

• We won’t cover estimation techniques in detail at all, but we note that a simple approach is (due to
Durbin in 1960) to start with some estimates ŵt the noise variates wt. Then use these as covariates,
and regress xt on xt−p, . . . , xt−1, ŵt−q, . . . , ŵt−1, over t = t0 + 1, . . . , n, where t0 = max{p, q}. When
q = 0, i.e., we are fitting an AR(p), we simply regress xt on xt−p, . . . , xt−1, over t = p+ 1, . . . , n. This
is a conditional maximum likelihood approach, where we condition on the initial values x1, . . . , xp

• You can read about other approaches in Chapter 3.5 of SS, Chapter 9.6 of HA, or references therein

• R provides an arima() function in base R; in addition, both the astsa package (written by Stoffer
of SS) and fable package (written by Hyndman of HA) provide functionality for ARIMA modeling

• Then there’s the topic of how to choose an ARMA model—that is, order selection, or determining
the choice of p, q from data. This is also quite complicated

• At least, this topic seems to be more controversial ... some authors like Hyndman believe that this
can be automated (via algorithms like the Hyndman-Khandakar algorithm), and this is what is
implemented in ARIMA() in the fable package when the order p, q is left unspecified. This kind of
automated model building is also central to some ML perspectives on forecasting (cf. auto ML). But
other authors like Stoffer believe that this doesn’t really work,1 and recommend more human-expert-
driven model building

• If the point is to identify the “right” structure, then Stoffer may have a point: if the data generating
model was truly a member of the ARMA family, then it would be hard to identify it reliably (see R
notebook examples)

• But to HA’s credit, their Chapter 9.8 does also recommend more of a human-in-the-loop procedure,
involving diagnostics. The gist of the non-automated part (which is fairly standard) is as follows:

0. Plot the data to identify (and possibly remove) any outliers, and apply data transformations
(e.g., Box-Cox), if needed, to stabilize the variance

1. If the data appears nonstationary, take differences until it is stationary

2. Plot the ACF and PACF to determine possible MA and AR orders

3. Fit an ARMA (or ARIMA) model, inspect the residuals: they should look like white noise

• Step 1 is at the heart of ARIMA, which we’ll cover soon. Steps 2-3 are the part that can be auto-
mated by Hyndman-Khandakar (though to reiterate, this may introduce considerable variance/volatility
into the estimation produce as a whole): instead of fitting just a single ARMA model, it fits various
ARMA models, and using an information criterion (like AICc) to select a final one

• Chapter 3.7 in SS also goes into details about a similar sequence of steps for building ARIMA mod-
els, with worked examples. We’ll also go through an example shortly, in the ARIMA section

• The ACF and PACF are great tools, and looking at them to get a sense of MA and AR dependence
is generally helpful, but we will not concern ourselves too much with the formality of ARMA order
selection (just like we did not with model selection in regression)

• Since our focus is on prediction, we will adopt the following simple perspective (just like in regres-
sion): an ARMA model is useful if it predicts well. And as before, we can assess this with time series
cross-validation. We’ll revisit this later, and you’ll go through examples on the homework

3.6 Regression with correlated errors*
• Very briefly, we describe regression with auto-correlated errors. Suppose we assume a model

yt =

k∑
j=1

xtjβj + zt, t = 1, . . . , n

1See https://github.com/nickpoison/astsa/blob/master/fun_with_astsa/fun_with_astsa.md#arima-estimation.

12

https://github.com/nickpoison/astsa/blob/master/fun_with_astsa/fun_with_astsa.md#arima-estimation

where instead of white noise, the error sequence zt, t = 1, . . . , n has some ARMA structure

• In the case that the noise was AR(p), with associated operator φ(B), we could then simply apply
this operator to both sides, to yield

φ(B)yt =

k∑
j=1

φ(B)xtjβj + φ(B)zt, t = 1, . . . , n

or defining y′t = φ(B)yt, x′tj = φ(B)xtj , wt = φ(B)zt,

y′t =

k∑
j=1

x′tjβj + wt, t = 1, . . . , n

where now wt, t = 1, . . . , n is white noise

• If we knew the coefficients φ1, . . . , φp that comprise the AR operator φ(B), then we could just obtain
estimates of the regression coefficients β1, . . . , βk by regressing y′t on x′t. But since we don’t know the
coefficients φ1, . . . , φp in general, these would need to be estimated as well

• We could solve for β1, . . . , βk and φ1, . . . , φp jointly using maximum likelihood, or least squares mini-
mization (which are not equivalent). For example, the latter would solve

min
β∈Rk,φ∈Rp

n∑
t=1

(
φ(B)yt −

k∑
j=1

φ(B)xtjβj

)2

which is called a nonlinear least squares problem (since each square is applied to a nonlinear function
of the parameters β, φ)

• For (invertible) ARMA noise, the same approach carries over but with π(B) = θ(B)−1φ(B) in place
of φ(B), which only makes the nonlinear least squares optimization much more complicated

• Identifying the ARMA structure in regression errors can be done by fitting a regression with regular
(white noise) errors, and then applying the same ideas as those described above for order selection
in ARMA to the residuals (inspect the ACF and PACF of residuals, and so on). For more, you can
read Chapter 3.8 of SS and Chapters 10.1-10.2 of HA. In R, the ARIMA() function in the fable pack-
age allows us to fit regression models with ARIMA errors

4 ARIMA models
• Finally, we arrive at ARIMA models. We’ve hinted at what these are about a few times already, but
it is nonetheless worth making the motivation explicit: the main point behind the new “I” component
here is to account for nonstationary. Well-behaved ARMA models (causal ones) are stationary, and
ARIMA allows us to handle nonstationary data

• The “I” stands for “integration”, so an ARIMA model is an autoregressive integrated moving average
model. Integration is to be understood here as the inverse of differencing, because we are effectively
just differencing the data to render it stationary, then assuming the differenced data follows ARMA

• First, we define the differencing operator ∇ that takes a given sequence and returns pairwise differ-
ences,

∇xt = xt − xt−1

• We can extend this to powers by iterating, as in

∇2xt = ∇∇xt = xt − 2xt−1 + xt−2

13

• Note that we can also write ∇ in terms of the backshift operator B as ∇ = 1−B, so that a general
dth order difference is

∇d = (1−B)d

• Now we can formally define, an ARIMA(p, d, q) model, for orders p, d, q ≥ 0: this is a model for xt,
t = 0,±1,±2,±3, . . . such that ∇dxt follows an ARMA(p, q) model, i.e.,

φ(B)∇dxt = θ(B)wt (22)

where wt, t = 0,±1,±2,±3, . . . is a white noise sequence, and φ(B), θ(B) are the AR and MA oper-
ators, respectively, as before. In other words, xt is given by dth order integration of an ARMA(p, q)
sequence

• Note that ARIMA(0,1,0) says that the differences in the sequence are white noise,

xt = xt−1 + wt

which is nothing more than a random walk, which we already know is nonstationary (the variance
grows over time)

• Below is a summary of some of the basic models that the ARIMA framework encompasses. We write
c for the intercept in the model, as in

φ(B)∇dxt = c+ θ(B)wt (23)

Recall, this was assumed zero in (22), and throughout, only for simplicity—in general, we allow it

White noise ARIMA(0,0,0) with c = 0
Random walk ARIMA(0,1,0) with c = 0
Random walk with drift ARIMA(0,1,0) with c 6= 0
Autoregressive ARIMA(p, 0, 0)
Moving average ARIMA(0, 0, q)

• A general warning should be given about choosing large d; HA say that in practice, d > 2 is never
really needed, and also give a cautionary note about taking d = 2 with c 6= 0 (more later)

• Now we walk through an example from HA on using ARIMA to model (and forecast) Central African
Republic exports. The data is shown in Figure 4, top row. It does not look stationary

• Taking first differences of the data, as shown in the second row, renders the data reasonably stationary-
looking

• ACF and PACF plots are shown in the third row of Figure 4. To be clear, these are applied to first
differences of the data. They are suggestive of MA(3) and AR(2) dynamics, respectively. Thus we
can go and fit each model: ARIMA(2,1,0) and ARIMA(0,1,3) (note that these are ARIMA models
with d = 1, since we specify the differencing as part of the model itself). Just for kicks, we can also
apply the Hyndman-Khandakar algorithm. This ends up choosing ARIMA(2,1,2)

• For prediction-focused tasks (and probably/necessarily, longer sequences), we would look at an es-
timate of (say) MAE using time series cross-validation to help us choose a model. Here, HA recom-
mend looking at AICc, which is what is also built into the fable package’s reporting of the ARIMA()
output. This leads us to choose ARIMA(2,1,0). The residuals from this model also look close to
white noise (see the R notebook for diagnostics) which is good

• Forecasts from our fitted ARIMA(2,1,2) model are shown in the rop row of Figure 5, for a 5-year
horizon. Also plotted are prediction intervals around the forecast (more on this in the next section).
Qualitatively, the forecasts aren’t very impressive at first glance—they look more or less like what
we’d get if we used a random walk (zero mean function, growing variance function), which is just
ARIMA(0,1,0)

14

10

15

20

25

30

35

1960 1980 2000
Year

E
xp

or
ts

 (
%

 o
f G

D
P

)

Central African Republic (CAR) exports

−4

0

4

8

1960 1980 2000
Year

di
ffe

re
nc

e(
E

xp
or

ts
)

2 4 6 8 10 12 14

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Lag

A
C

F

Series diff(car$Exports)

2 4 6 8 10 12 14

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Lag

PA
C

F

Series diff(car$Exports)

Figure 4: Top row: exports (as a percentage of GDP) for Central African Republic (from HA). Middle
row: first differences of exports. Bottom row: ACF and PACF functions of first differences.

15

10

20

30

1960 1980 2000 2020
Year

E
xp

or
ts level

80

95

ARIMA(2,1,0)

0

10

20

30

1960 1980 2000 2020
Year

E
xp

or
ts level

80

95

Random walk

Figure 5: Top row: forecasts from ARIMA(2,1,2). Bottom row: forecasts from ARIMA(0,1,0) with c = 0,
i.e., a random walk.

16

• However, HA comment that the prediction intervals here are narrower than they would be for a
random walk, which is due to the contribution of the nontrivial AR and MA components that we’ve
been able to pick up and model. To check this, we plot forecasts from ARIMA(0,1,0) in the bottom
row of Figure 5, and indeed you can see they have wider uncertainty bands

• A general note to close out our example: the ARIMA() function in the fable package can be handy
but also a bit dangerous because it may automate away some part of the model building procedure
even when you think you’ve specified a model manually. Check out the R notebook for an example
and guidance on how to explicitly get what you want ...

4.1 Seasonality
• Seasonality is typically handled in ARIMA models by seasonal differencing. This assumes that the

seasonal periods are known

• For example, let’s suppose that the seasonal period is known to be s. Then, to start off as simple as
possible, a purely seasonal ARMA model with orders P,Q ≥ 0 and period s, denoted ARMA(P,Q)s,
is of the form

Φ(Bs)xt = Θ(Bs)wt (24)

where Φ(Bs) = 1 − Φ1B
s − Φ2B

2s − · · · − ΦPB
Ps and Θ(B) = 1 + Θ1B + Θ2B

2s + · · · + ΘQB
Qs.

Note that these model AR and MA dynamics, but on the scale of seasons, since all backshifts are in
multiples of s

• To select orders for seasonal dynamics we would follow ideas just like those for regular (nonseasonal)
ARMA models: look at ACF and PACF plots, but for lags on the seasonal scale, in multiples of s

• To make this more sophisticated, we can add in AR and MA dynamics on the original scale, which
leads to a seasonal ARMA model of orders p, q, P,Q ≥ 0 and period s, denoted ARMA(p, q)(P,Q)s,

φ(B)Φ(Bs)xt = θ(B)Θ(Bs)wt (25)

where φ(B) = 1− φ1B − φ2B2 − · · · − φpBp and θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q are the AR and
MA operators, as before, and Φ(Bs),Θ(Bs) are the seasonal operators, as above

• The full scale sophistication is achieved by adding in integration to account for nonstationarity. How-
ever, now we can also account for nonstationarity on the seasonal scale; first define a Dth order sea-
sonal difference eperator

∇Ds = (1−Bs)D

Then define the seasonal ARIMA (SARIMA) model of orders p, d, q, P,D,Q ≥ 0 and period s, de-
noted ARIMA(p, d, q)(P,D,Q)s,

φ(B)Φ(Bs)∇d∇Ds xt = θ(B)Θ(Bs)wt (26)

As usual, we are omitting an intercept c for simplicity, but in general we could include this on the
right-hand side in (26). (Phew! That’s the full beast. We’ve maxed out in complexity, at least for
this lecture ...)

• Estimation is even more complicated in SARIMA models (more parameters, more nonlinearity) but
thankfully software does it for us

• We won’t go into any further details than what we have discussed already, but will walk through an
example from HA to model (and forecast) US employment numbers in leisure/hospitality. The data
is shown in Figure 6, top row. It has a clear seasonal pattern with (safe guess) a 1 year period

• Taking seasonal differences (i.e., applying ∇s with s = 12, since this is monthly data) has removed
the seasonality, but the result, in the middle row of Figure 6, is still very clearly nonstationary

• Additionally taking monthly differences (i.e., applying the composite operator ∇∇s), in the bottom
row of Figure 6, is reasonably stationary-looking

17

12

14

16

2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month

E
m

pl
oy

ed
 (

m
ill

io
ns

 o
f p

eo
pl

e)

US employment: leisure and hospitality

−0.4

−0.2

0.0

0.2

0.4

0.6

2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month

di
ffe

re
nc

e(
E

m
pl

oy
ed

, l
ag

 =
 1

2)

−0.10

−0.05

0.00

0.05

0.10

0.15

2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month

di
ffe

re
nc

e(
di

ffe
re

nc
e(

E
m

pl
oy

ed
, l

ag
 =

 1
2)

)

Figure 6: Top row: number of US jobs (in millions) in leisure/hospitality (from HA). Middle row: seasonal
(yearly) differences. Bottom row: differences of seasonal differences.

18

• ACF and PACF plots are shown in the top row of Figure 7. To be clear, these are applied to the dif-
ferences of yearly differences (∇∇sxt, t = 1, 2, 3, . . . , as plotted in the bottom row of Figure 7). The
ACF shows two moderate correlations at lags 1 and 2 and then a big spike at lag 12. This is sugges-
tive of a nonseasonal MA(2) and a seasonal MA(1), and therefore we try an ARIMA(0, 1, 2)(0, 1, 1)12
model. Meanwhile, the PACF again shows moderate correlations at lags 1 and 2 and a big spike at
lag 12. This suggests a nonseasonal AR(2) and a seasonal AR(1), so we can try ARIMA(2, 1, 0)(1, 1, 0)12.
Lastly, we can also try the Hyndman-Khandakar algorithm, which chooses ARIMA(1, 1, 1)(2, 1, 1)12

5 10 15 20 25

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Lag

A
C

F

Series diff(diff(leisure$Employed, lag = 12))

5 10 15 20 25

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Lag
PA

C
F

Series diff(diff(leisure$Employed, lag = 12))

12.5

15.0

17.5

20.0

2000 Jan 2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month

E
m

pl
oy

ed level

80

95

ARIMA(2,1,0)(1,1,0)[12]

Figure 7: Top row: ACF and PACF functions of differences of seasonal differences. Bottom row: forecasts
from ARIMA(2,1,2).

• AICc (see the R notebook for details and diagnostics) tells us to choose the ARIMA(1, 1, 1)(2, 1, 1)12
model. But that seems a bit doubtful because it suggests there is a second-order autoregressive dy-
namic on the yearly scale, which makes the model much more complicated. As usual, if we cared
about prediction, then we should probably just use time series cross-validation to evaluate the differ-
ent models. More on this in the forecasting section. For now, we’ll just produce 3-year forecasts from
the ARIMA(0, 1, 2)(0, 1, 1)12 model

19

• These are shown in the bottom row of Figure 7. They actually seem fairly plausible and interesting.
Note that the seasonality was nicely captured by the seasonal differencing, and the increasing trend
seems to have been nicely captured by the nonseasonal differencing

5 Forecasting
• ARIMA models, especially with seasonality extensions, can be powerful forecasters, as we’ve seen in
a couple of examples. Some authors treat torecasting with ARIMA in a complex and notation-heavy
way, but in fact it can be explained intuitively (which we borrow from HA)

• As before, we will use the notation x̂t+h|t to denote a forecast of xt+h made using data up through t

• Some potentially helpful nomenclature: t+ h here is called the target time (time of the target we are
trying to forecasting), and t is called the forecast time (time at which we make the forecast)

• Obtaining the forecast x̂t+h|t from an ARIMA model can be done by iterating the following steps:

1. Start with the ARIMA equation

φ(B)Φ(Bs)∇d∇Ds xt = c+ θ(B)Θ(Bs)wt

Plug in for parameter estimates, and rearrange so that xt is on the left-hand side an all other
terms are on the right-hand side

2. Rewrite the equation by replacing t with t+ h

3. On the right-hand side of the equation, replace future observations (xt+k, k ≥ 1) with their fore-
casts, future errors (wt+k, k ≥ 1) with zero, and past errors (wt−k, k ≥ 0) with their ARIMA
residuals

• Beginning with h = 1, we iterate this procedure for h = 2, 3, . . . as needed to get the forecasts at the
ultimate horizon we desire

• It helps to walk through an example. Consider forecasting with a fitted ARIMA(3,1,1) model, which
we start by writing as

(1− φ̂1B − φ̂2B2 − φ̂3B3)(xt − xt−1) = ĉ+ (1 + θ̂1B)wt

• We expand this as

xt − φ̂1xt−1 − φ̂2xt−2 − φ̂3xt−3 − (xt−1 − φ̂1xt−2 − φ̂2xt−3 − φ̂3xt−4) = ĉ+ wt + θ̂1wt−1

• And rearrange as

xt = ĉ+ (1 + φ̂1)xt−1 + (φ̂2 − φ̂1)xt−2 + (φ̂3 − φ̂2)xt−3 − φ̂3xt−4 + wt + θ̂1wt−1

• To make a 1-step ahead forecast, we first replace t by t+ 1 above:

xt+1 = ĉ+ (1 + φ̂1)xt + (φ̂2 − φ̂1)xt−1 + (φ̂3 − φ̂2)xt−2 − φ̂3xt−3 + wt+1 + θ̂1wt

and then we set wt+1 = 0, and replace wt by ŵt, which is the residual from our fitted ARIMA model,
yielding

x̂t+1|t = ĉ+ (1 + φ̂1)xt + (φ̂2 − φ̂1)xt−1 + (φ̂3 − φ̂2)xt−2 − φ̂3xt−3 + θ̂1ŵt

• To make a 2-step ahead forecast, we similarly start with

xt+2 = ĉ+ (1 + φ̂1)xt+1 + (φ̂2 − φ̂1)xt + (φ̂3 − φ̂2)xt−1 − φ̂3xt−2 + wt+2 + θ̂1wt+1

and then we set wt+2 = wt+1 = 0, and replace xt+1 by x̂t+1|t, yielding

x̂t+2|t = ĉ+ (1 + φ̂1)x̂t+1|t + (φ̂2 − φ̂1)xt + (φ̂3 − φ̂2)xt−1 − φ̂3xt−2

• This process can be iterated any number of times to obtain forecasts arbitrarily far into the future

20

5.1 Behavior of long-term forecasts
• Should we keep iterating the process above to generate forecasts arbitrarily far into the future?

• The answer is almost certainly “no”, in most applications! You should be more careful. Short of
detecting and projecting seasonality, ARIMA models are limited for long-term forecasts (in general,
long-term forecasts are very hard without precise domain-specific knowledge of what the long-range
dynamics look like ... and even then, many domains to not offer much to say there ...)

• It is important to have a qualitative sense of what long-term forecasts look like in ARIMA. Again,
we borrow this nice explanation from HA. Starting with (23), a nonseasonal ARIMA model, we can
break down the explanation into cases (recall c is the intercept, and d is the differencing order):

1. If c = 0 and d = 0, then the long-term forecasts will converge to zero

2. If c = 0 and d = 1, then the long-term forecasts will converge to a nonzero constant

3. If c = 0 and d = 2, then the long-term forecasts will follow a linear trend

4. If c 6= 0 and d = 0, then the long-term forecasts will converge to the historical mean

5. If c 6= 0 and d = 1, then the long-term forecasts will follow a linear trend

6. If c 6= 0 and d = 2, then the long-term forecasts will follow a quadratic trend (can be dangerous!
some software packages do not allow d ≥ 2 when c 6= 0 ...)

• You will verify this on your homework for some simple ARIMA models, where you’ll also work out
the qualitative behavior for long-term forecasts from seasonal ARIMA models

5.2 Split-sample and cross-validation
• At last, we arrive to our bread-and-butter tools for evaluating ARIMA models for their predictive

accuracy: split-sample and time series cross-validation (CV)

• They apply exactly as described in the regression lecture: to recap, in split-sample validation, we
pick a time t0, train our model (regression, ARIMA, whatever) on data up through t0, and then we
evaluate forecasts x̂t over times t > t0:

SplitMSE =
1

n− t0

n∑
t=t0+1

(x̂t − xt)2

In time series CV, we use data before t0 as a burn-in period (usually we would choose a smaller t0
here than for split-sample) to ensure the initial model is decent, and then iteratively retrain at each
t > t0 in order to make forecasts. For h-step ahead forecasts:

CVMSE =
1

n− t0

n∑
t=t0+1

(
x̂t|t−h − xt

)2
(Instead of MSE, we could also use MAE, or MAPE, or MASE as our metric ...)

• There is not much more to say other than to reiterate that these are our most robust (assumption-
lean) tools for assessing utility in a predictive context. You’ll get continued practice with time series
CV on your homework. The fable package that we’ll use for a lot of forecasting tools has a handy
(though memory-inefficient) way of implementing this, which saves you from writing a loop by hand

• There is one important warning to give however! This applies to cross-validation, generally, in any
setting. Cross-validation evaluates the prediction error of an entire procedure. Thus the entire proce-
dure must be rerun each time predictions are to be validated. So, e.g., if we are using auto-ARIMA
(as implemented by ARIMA() in the fable package) to select an ARIMA order for us, then we must
rerun auto-ARIMA at each time t > t0 in order to evaluate forecasts in the last display. (And, note,
it will generally pick different orders at each t > t0 ... the way to think about it is that we are evalu-
ating the prediction error of auto-ARIMA procedure itself, not any particular selected order)

21

• In other words, we cannot run auto-ARIMA once over all time, and then take the selected ARIMA
order and apply this retrospectively. That would not yield an honest estimate of prediction error
(since we would have used the future at t > t0 to select the ARIMA order). Summary:

Wrong way: Run auto-ARIMA at time n (all time) to select p, d, q, and use this retrospectively
in time series CV to fit ARIMA(p, d, q) at each t > t0 and make forecasts

Right way: Run auto-ARIMA at each t > t0 to select (time-dependent) p, d, q, and use this to
fit ARIMA(p, d, q) and make forecasts in time series CV

• (Note: we are not advertising or advocating for the use of auto-ARIMA, but are simply explaining
that this would be the right way to validate it)

• Finally, as a rule-of-thumb, we recall Occam’s razor: if a number of models all have reasonably sim-
ilar split-sample or cross-validated prediction error, then we would generally prefer to use the sim-
plest among them

5.3 Prediction intervals
• The predictions x̂t+h|t from ARIMA described above are known as point forecasts. But if you look

back at Figures 5 and 7, you can see bands around the point forecasts (which are the dark lines)

• These bands represent prediction intervals, which are typically quite important in practice, since
they reflect uncertainty in the predictions that are made (and can be useful for downstream decision-
making)

• There are various ways to compute prediction intervals. One method is to obtain an estimate σ̂2
h of

the variance of the “h-step ahead forecast distribution”. This is in quotes because we have not de-
fined this precisely, and we will avoid going into details because this approach is not always tractable,
and also requires more assumptions about the ARIMA model, including (typically) normality of the
noise distribution. But in any case, having computed such an estimate, we could model the h-step
ahead forecast distribution at time t as

N
(
x̂t+h|t, σ̂

2
h

)
and compute prediction intervals accordingly. For example, to compute a central 90% prediction
interval, we would use [

x̂t+h|t − σ̂hq0.95, x̂t+h|t + σ̂hq0.95
]

where q0.95 is the 0.95 quantile of the standard normal distribution

• Another method is adapt the method described previously to iteratively produce point forecasts to
instead iteratively produces samples paths from the forecast distribution. This is what is done in the
fable package’s forecast() function when bootstrap = TRUE. The gist of the idea is as follows: in
step 3, instead of replacing future errors (wt+k, k ≥ 0) by zero, we replace them by a bootstrap draw
(i.e., a uniform sample with replacement) from the empirical distribution of past residuals. Given the
sample paths, we can then read off sample quantiles at t+ h for a prediction interval

• Unfortunately, neither of these methods (nor any other traditional methods) for producing prediction
intervals are guaranteed to actually give coverage in practice. That is, you would hope that our 95%
prediction intervals actually cover 95% of the time, but this need not be the case

• Fortunately, we will learn that there are some relatively simple correction methods that can act as
post-processors to endow any given sequence of prediction intervals with long-run coverage. We will
talk about this near the end of the course when we discuss calibration

5.4 ARIMAX models
• In practice, including auxiliary features in an ARIMA model can make it much more powerful. This

is true in general: finding good predictors can make a huge difference in forecasting!

22

• Auxiliary features are often referred to as exogenous in the context of time series models, and an
ARIMA model with exogenous predictors is often abbreviated ARIMAX

• Formally, an ARIMAX(p, d, q) model is an extension of the ARIMA model (22) of the form

φ(B)∇dxt = βTut + θ(B)wt

where ut, t = 0,±1,±2,±3, . . . is an exogenous predictor sequence

• Forecasting with ARIMAX models is a little more complicated because, for “true” ex-ante forecasts,
we will typically not have the values of the exogenous predictor available that we need (think about
the steps we outlined for forecasting with ARIMA models, and how we substituted future observa-
tions with their forecasted values—unless we build a separate forecast model for ut, we will not know
how to impute them)

• As usual (as we described in the regression lecture), we can use lagged exogenous features as pre-
dictors in order to partially circumvent this issue: including a lagged feature ut−k in the ARIMAX
model for xt will allow us to forecast up to k steps into the future

• (Note: be careful not to confuse an ARIMAX model with a regression with correlated errors! They
are not the same thing. In both models, there are exogenous predictors and and errors with MA
dynamics, but the distinguishing factor is the AR dynamic: in an ARIMAX model, the response,
which is xt in our notation here, exhibits AR dynamics; in a regression with correlated errors, the
errors exhibit AR dynamics)

5.5 IMA models
• Forecasting with the ARIMA(0,1,1) model, also written as IMA(1,1), bears an interesting connection
to what is called simple exponential smooting (SES). This is also sometimes called an exponentially
weighted moving averages (EWMA) forecaster. It tends to be popular in economics (SS call it “fre-
quently used and abused”)

• To develop the connection, consider the IMA model with an MA coefficient of θ = −(1 − α), where
0 < α < 1. We can write this as

xt − xt−1 = wt − (1− α)wt−1

• Because α < 1, this has an invertible representation: writing yt = xt − xt−1, recall what we developed
in (14), which yields

wt =

∞∑
j=0

(1− α)jyt−j

or

yt = −
∞∑
j=1

(1− α)jyt−j + wt

• Substituting yt = xt − xt−1, and rearranging, this gives

xt = xt−1 −
∞∑
j=1

(1− α)j(xt−j − xt−j−1) + wt

= xt−1 +

∞∑
j=1

(1− α)jxt−j−1 −
∞∑
j=1

(1− α)jxt−j + wt

=

∞∑
j=1

(1− α)j−1xt−j −
∞∑
j=1

(1− α)jxt−j + wt

=

∞∑
j=1

α(1− α)j−1xt−j + wt

23

• The 1-step ahead prediction from this model is therefore

x̂t+1|t =

∞∑
j=1

α(1− α)j−1xt+1−j

= αxt +

∞∑
j=2

α(1− α)j−1xt+1−j

= αxt +

∞∑
j=1

α(1− α)jxt−j

= αxt + (1− α)

∞∑
j=1

α(1− α)j−1xt−j

= αxt + (1− α)x̂t|t−1

• In other words, the 1-step ahead prediction is a weighted combination of the current observation xt
and the previous prediction x̂t|t−1

• Smaller values of α (closer to 0) lead to smoother forecasts, since we are “borrowing” more from the
previous forecast, in the last display

• This is the simplest in a class of methods based on exponential smoothing, which we will cover in the
next lecture

24

	AR models
	AR(1): auto-covariance and stationarity
	Causality

	MA models
	Stationarity
	MA(1): issues with non-uniqueness
	Invertibility

	ARMA models
	Parameter redundancy*
	Causality and invertibility*
	Auto-covariance*
	Partial auto-covariance
	Estimation and selection
	Regression with correlated errors*

	ARIMA models
	Seasonality

	Forecasting
	Behavior of long-term forecasts
	Split-sample and cross-validation
	Prediction intervals
	ARIMAX models
	IMA models

