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1 Advanced forecasters
• Thus far, we’ve learned in-depth about ARIMA and ETS as our two major forecasting frameworks.
Undoutedbly, these are batted-tested frameworks that have been used for decades and will take you
far, albeit with proper scrutiny

• Of course, there are actually many other forecasting methods out there, and forecasting continues to
be an active topic of research. Below, we briefly summarize three other forecasting methods, chosen
based on their popularity. They also seem to constitute a common cast of characters, together with
ARIMA and ETS (based on, say, what is available in R and Python forecasting toolkits)

1.1 Theta model
• First on our list is the Theta model, proposed by Assimakopoulos and Nikolopoulos (2000). This is

on our list not as an advanced forecaster per se (as you will see, it’s actually quite simple)

• Instead, it is a simple and popular method that began gaining a lot of attention in parts of the fore-
casting community, and is closely connected to something you already know: exponential smoothing

• Our presentation here follows Hyndman and Billah (2003), who give a nice, clear perspective on the
Theta method and its connection to exponential smoothing

• Given data xt, t = 1, 2, 3, . . . , the Theta method starts by defining a smoothed sequence yθ,t, t =
1, 2, 3, . . . by the second-order difference equation:

∆2yθ,t = θ∆2xt

Here ∆2 = (1−B)2 is the second-order difference operator, just like in our ARIMA lecture, and θ ≥ 0
is a parameter. The solution to the above is given by

yθ,t = aθ + bθt+ θxt

for some (constant in time) intercept and slope parameters aθ, bθ

• For fixed θ, the intercept and slope parameters are fit by minimizing the sum of squared errors to
the original sequence

min
aθ,bθ

n∑
t=1

(xt − yθ,t)2 ⇐⇒ min
aθ,bθ

n∑
t=1

(
(1− θ)xt − aθ − bθt

)2
which is simply a linear regression of (1− θ)xt on time t

• Once these estimates âθ, b̂θ are found, forecasts are made by running simple exponential smoothing
(SES) on the sequence

ŷθ,t = âθ + b̂θt+ θxt

if θ > 0, or by extrapolating the line â0 + b̂0t forward in time if θ = 0
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• Assimakopoulos and Nikolopoulos (2000) make the following general recommendation:

– produce forecasts ŷ0,t+h|t with θ = 0 (recall this is just extending the line â0 + b̂0t);

– produce forecasts ŷ2,t+h|t with θ = 2 (recall this is given by just running SES on ŷ2,t)

– return their average: ŷt+h|t = (ŷ0,t+h|t + ŷ2,t+h|t)/2.

Seasonality, if present, is estimated and removed before running this procedure, and added back in at
the end. Figure 1 gives a visualization of the canonical “Theta lines”: ŷ0,t and ŷ2,t, for θ = 0, 2

Figure 1: The canonical “Theta lines”, from Dudek (2019).

• Hyndman and Billah (2003) show that this procedure is quite similar to running SES with an added
linear trend, whose slope is b̂0/2. This is like a special case of Holt’s linear trend method with β = 0
(no evolution of the slope over time)

• These authors also compare the Theta method with Holt’s linear trend method on the data from the
M3 forecasting challenge (where the Theta method performed well and was subsequently thrown into
the spotlight), and observe that Holt’s linear trend performs competitively

• It is worth knowing about the close connections between Theta and exponential smoothing, as much
of the literature on the Theta model does not seem to emphasize this aspect. There has been more
recent work on the Theta model (which may further distinguish it from exponential smoothing—we
cannot say, because we have not followed it) that you may be interested in reading up on

1.2 Prophet model
• Next on our list is the Prophet model, proposed by Taylor and Letham (2018), from Facebook/Meta.
This has become popular for large-scale forecasting enterprises, and the popular opinion seems to be
that its advantages over traditional ARIMA or ETS models are twofold: flexibility and speed. But,
make sure to read on, especially to the end of this subsection, for further discussion of this

• The Prophet model is a particular type of signal plus noise model,

xt = gt + st + ht + εt

where εt, t = 1, 2, 3, . . . is a white noise sequence, and:

– gt represents a trend component

– st represents a seasonal component

– ht captures holiday/calendar effects
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• This can be seen as a particular type of smoother, based on a particular model for the trend (which
we will describe shortly; the seasonal and holiday components are fairly generic). We could also refer
to it as a particular type of additive model, where the regressor is time

• The seasonal component is parametrized by a Fourier (cosine and sine) basis at given fixed, known
periods chosen by the user. For frequencies ωj , j = 1, . . . , p (equivalently, periods 1/ωj , j = 1, . . . , p),
recall, this is:

st =

p∑
j=1

(
aj cos(2πωjt) + bj sin(2πωjt)

)
for coefficients aj , bj , j = 1, . . . , p

• The holiday/calendar component is simply parametrized using indicator variables

ht =

m∑
j=1

αj · 1{t ∈ Dj}

where αj , j = 1, . . . ,m are coefficients and each Dj is a set of dates representing a particular holiday
or calendar event (e.g., Christmas, Thanksgiving, etc.)

• Finally, the trend component is modeled in one of two ways. The first way is for saturating trends.
For this, Taylor and Letham (2018) propose to model gt using a sigmoid function with a piecewise
growth rate:

gt =
C(t)

1 + exp
(
− c0 − c1t−

∑r
j=1 βj · (t− tj)+

)
where u+ = max{u, 0} denotes the positive-part of u. Here C(t) is a (possibly) time-varying capacity,
which it appears Taylor and Letham (2018) recommend be set externally (e.g., based on market size
considerations)

• For non-saturating trends, Taylor and Letham (2018) propose to model gt using a piecewise linear
trend directly:

gt = c0 + c1t+

r∑
j=1

βj · (t− tj)+

• In either case (saturating or non-saturating), βj , j = 1, . . . , r are coefficients to be estimated. Also,
tj , j = 1, . . . , r are knots (locations where the slope changes), which, in the simplest case, could be
fixed ahead of time. Instead, Taylor and Letham (2018) recommend that knots be selected using `1
penalization from a large initial set of locations. That is, they use the `1 penalty

r∑
j=1

|βj |

when fitting the model, which is like a special type of lasso regression. (In fact, though it may not
be obvious at first pass, placing an `1 penalty on βj , j = 1, . . . , r here is actually equivalent to
reparametrizing the entire sequence as gt = θt, and then using an `1 penalty on second differences
of θt; recall, this is the penalization scheme used in trend filtering, which you learned earlier in the
course when we covered smoothing)

• Altogether, the Prophet model is fit by minimizing the sum of squared errors to the observed data,
over all parameters aj , bj , αj , c0, c1, βj that determine the decomposition, with a squared `2 (ridge)
penalty on the parameters aj , bj , αj for the seasonal component st and holiday component ht, and an
`1 (lasso) penalty on the parameters βj for the trend component gt

• Forecasts are generated by extrapolating the fitted components forward in time. For st and ht, this
is straightforward, because they are periodic in nature. For gt, this is done by holding the slope (i.e.,
growth rate in the saturating model) constant from its last value, as we move forward in time
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• (Though unimportant for our purposes here, Taylor and Letham (2018) actually phrase all of this
in the context of a hierarchical Bayesian model, with normal and Laplace priors that serve the pur-
pose of regularization; this Bayesian machinery also provides added stochasticity in computation of
prediction intervals)

• So, how does the Prophet model compare to ARIMA and ETS? It depends on who you ask. In their
original paper, Taylor and Letham (2018) find that ARIMA and ETS models are too rigid in their
motivating examples—take a look at Figure 3 in their paper, and compare Figure 2, which displays
Prophet forecasts on the same data

Figure 2: Prophet forecasts, from Taylor and Letham (2018).

• Indeed, in their traditional forms, ARIMA and ETS models lack the flexibility of the Prophet model,
particularly the flexibility exhibited in the latter’s trend component. However, both ARIMA and
ETS can be extended to accommodate more sophisticated trends. With ARIMA, you have actually
already seen a way to do this: we can phrase the problem as regression with correlated errors (where
we use an ARIMA model for the errors), and then use a flexible basis representation to model trends
just like Prophet does. As a reminder, this model takes the form

xt =

k∑
j=1

utjbj + zt, t = 1, . . . , n

where zt, t = 1, . . . , n follows an ARIMA(p, d, q) model. To capture the same model as Prophet, we
could simply define one feature utj per cosine and sine basis function cos(2πωjt) and sin(2πωjt), one
feature per holiday indicator 1{t ∈ Dj}, and one feature per piecewise linear function (t− tj)+

• Hyndman and Athanasopoulos (HA) call this a dynamic regression model and study it in Chapter 10
of their book. The advantage this has over Prophet is that it is able to capture auto-correlations in
the errors, which can lead to narrower prediction intervals. The advantage Prophet has is speed: it is
usually more efficient to fit the Prophet model, since its error model (white noise) is simpler and this
makes optimization easier

1.3 Neural network autoregression
• A neural network describes a class of models that make real-valued predictions f(x) ∈ R from an

input feature vector x ∈ Rp of the form:

f1(x) = ρ(W1x+ b1)

f`(x) = ρ
(
W`−1f`−1(x) + b`−1

)
, ` = 2, . . . , L

f(x) = fL(x)
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• Here each W` ∈ Rd`×d`−1 is a matrix of weights that maps from the dimension d`−1 of layer `− 1 to
the dimension d` of layer `. Note that d0 = p, and dL = 1 (for real-valued predictions)

• Each b` ∈ Rd` is a vector of intercepts (often called biases in the deep learning community). Generi-
cally, the parameters W`, b` are all learned by minimizing the sum of squared errors of predictions on
the training data

• The function ρ is a nonlinear activation function that is interpreted as being applied componentwise.
It is user-chosen; common choices are ρ(u) = u+ and ρ(u) = 1/(1 + e−u)

• Lastly, L here is the number of layers, also a design choice, and often called the depth of the network

• For time series, one of the simplest things that can be done with neural networks is just to form in-
put features by taking lags of the given response variable. We can use both nonseasonal and seasonal
lags (as in ARIMA). This gives rise to what we call a neural network autoregressive (NNAR) model

• What we described above is actually just a particular type of neural network architecture, and in-
deed, the simplest kind, called a feedforward neural network. Many other architectures are possible,
and some more appropriate for time series data, such as the long short term memory (LSTM) net-
work, a type of recurrent neural network

• A popular time series forecaster based on LSTMs is called DeepAR, proposed by Salinas et al. (2020),
from Amazon. Relative to all other methods you have learned thus far, DeepAR is quite complicated
to describe precisely (and to train). Figure 3 gives a schematic: the left column for training, and the
right for forecasting

Figure 3: Schematic of DeepAR network, from Salinas et al. (2020), where each hi,t is the output of a
recurrent neural network with LSTM cells.

• DeepAR can work very well in data-rich prediction problems which have a high signal-to-noise ratio,
but it can also be too variable outside of these settings, as can other deep learning forecasters

• A strength DeepAR is are often cited as having is that it can learn rich, joint correlation structures
between multiple time series—think of spatiotemporal data, where we have one time series per loca-
tion, and many locations—and it can and produce forecasts which respect this correlation structure

• You’ll also often hear people saying that ARIMA or ETS models are incapable of modeling multi-
ple series. From the traditional point-of-view this is true. There are extensions of these models to
handle multiple series, for example, vector autoregressive (VAR) models. However, these models are
typically too cumbersome to fit at large scale, when we have many time series we want to co-model.
A simpler alternative would be run ARIMA or ETS individually on each time series of interest, and
then model the dependence in their forecasts errors as a second-layer model, whose output we could
use to adjust the original forecasts

• Finally, and perhaps unsurprisingly, many researchers are now re-purposing transformers in order to
turn them into time series forecasters. As deep learning continues to move forward, we will continue
to see spillover into time series forecasting
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2 Ensembling
• So, you have lagged regression, ARIMA, ETS, Theta, Prophet, and DeepAR in your forecast toolkit.
You have data in front of you, and you’re unsure which model(s) will work best. What do you do?

• The answer we have given all semester: use time series CV. That is, move the time index back to
t = t0, train each model on the past, make forecasts, compare to the unseen target values, march the
time index forward sequentially, and repeat. In doing so, we can compute our chosen accuracy metric
(MAE, MASE, etc.) for each model, and choose the one that emerges as the most accurate, perhaps
using Occam’s razor to help decide between models that perform similarly

• Here is an alternative that can often be advantageous: combine the models, which can be informed
by their out-of-sample predictions from time series CV, rather than using CV to select one of them

• The combination of prediction models is often called ensembling, or aggregation. It has a long history
in statistics and machine learning, including in forecasting. Still, it seems perhaps people don’t quite
appreciate enough just how effective it can be

• Roughly speaking, there are two types of ensembles: untrained and trained ones. An untrained en-
semble simply combines a given set of base models (also called constituent models) without consider-
ation of their individual past performance. Meanwhile, a trained ensemble combines the base models
in a way that reflects their performance, typically upweighting more accurate base models

• At a high level, an ideal ensemble model would satisfy the following two properties:

1. “compete-with-best”: the ensemble should have competitive accuracy with the best indvidual
constituent model

2. “robustness-over-all”: the ensemble should have superior robustness (make fewer large errors)
than any individual constituent model

• Interestingly, these two properties appear to be somewhat at odds. Untrained ensembles can be very
robust, but typically cannot compete with the best constituent model. On the other hand, trained
ensembles can compete with the best constituent model (and even outperform it, if the ensemble is
flexible enough), but “heavier” training schemes tend to hurt robustness

2.1 Untrained methods
• The simplest untrained ensemble method is just to take a straight average of all constituent model

forecasts. Denote these by x̂jt+h|t, for j = 1, . . . , p. Then the simple average ensemble forecast is

x̂avg
t+h|t =

1

p

p∑
j=1

x̂jt+h|t

• Another option is to take a median of point forecasts from the constituent models,

x̂med
t+h|t = median

{
x̂jt+h|t : j = 1, . . . , p

}
• Despite their simplicity, these methods can be very effective, especially when we have a diverse set of
constituent models (which have a healthy degree of diversity in their errors), as this can lead to very
robust average or median ensembles

• Figure 4 shows a striking example of this, from 1- though 4-week ahead Covid-19 death forecast-
ing. The CovidHub-ensemble model was (for most of the pandemic) a simple median ensemble of
all forecasts submitted to the US Covid-19 Forecast Hub which met a certain very basic set of in-
clusion criteria (ruling out wild or unrealistic forecasts). This ensemble model was the basis for all
official CDC communications on short-term Covid-19 forecasting. The number of constituent models
fluctuated up and down over time, in between about 25 to 50
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• For state-level forecasts made over a 1.5 year period during the pandemic, the figure considers a no-
tion called standardized rank that is defined as follows. For a given forecast task (given state, given
target date, and given horizon), we rank all available forecasts using an accuracy measure called WIS
(a generalization of absolute error for quantile-based forecasts) figure. We assign a standardized rank
of 1 for the most accurate forecast of all available forecasts for that task, and 0 to the least accurate.
Then for each forecaster, we plot a histogram of their standardized rank distribution over all tasks

• As we can see in Figure 4, the distribution of the ensemble is very different from all others—in par-
ticular, look at its thin left tail. It is the only forecast model that was in the top half of forecasters
(standardized rank ≥ 0.5) for 75% of the forecast tasks. Interestingly, we can also see that it is not
in the top quartile of forecasters (standardized rank ≥ 0.75) as often as the best constituent models,
hinting at the tradeoff described above
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Figure 4: Comparison of Covid-19 death forecast models, from Cramer et al. (2022).

2.2 Trained methods
• One of the simplest trained ensemble methods is to directly fit a weighted combination of constituent
forecasts in order to optimize accuracy (MSE, MAE, etc.). For example, going by MSE, and fixing
h = 1 for simplicity, to form the ensemble at time t (for a forecast of the target value at time t+ 1),
we would first solve:

min
w∈Rp

t∑
s=t0+1

(
xs −

p∑
j=1

wj · x̂js|s−1

)2

subject to

p∑
j=1

wj = 1, and wj ≥ 0, j = 1, . . . , p

Note that this is simply a regression of the target values (response) on the forecasts made by con-
stituent models (features), where we constrain the coefficients to be nonnegative and sum to 1
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• After obtaining the solution ŵtj , j = 1, . . . , p, we then form the weighted ensemble to make forecasts

x̂stack
t+1|t =

p∑
j=1

ŵtj · x̂
j
t+1|t

• This is sometimes called linear stacking : here “stacking” refers to the fact that we have stacked the
predictions made by our constituent models into features for a second-level model, and “linear” refers
to the fact that our second-level model is linear in the features (it is a linear regression subject to
constraints)

• Instead of re-solving the optimization problem above at each forecast time t, we could also incremen-
tally update the learned weights over time. An algorithm called (online) mirror descent applied to
the above optimization problem yields the following intuitive weight updates, at time t:

w̃tj = ŵt−1j exp

{
η · x̂jt|t−1

(
xt −

p∑
j=1

ŵt−1j · x̂jt|t−1

)}
, j = 1, . . . , p

ŵtj = w̃tj

/ p∑
`=1

w̃t`, j = 1, . . . , p

Here η > 0 is a parameter called the learning rate. In words, if a forecaster’s latest prediction x̂jt|t−1
is correlated with the ensemble’s latest residual xt −

∑p
j=1 ŵ

t−1
j · x̂jt|t−1, then it is underrepresented

in the ensemble, and we increase its weight. This is related to a general class of online learning algo-
rithms called exponential weights algorithms; and there is a huge literature on related schemes

• Stacking—especially more flexible second-level models which are nonlinear or use weights that de-
pend on features—can lead to impressive accuracy in practice. Figure 5 shows a nice example of this
(albeit in a batch prediction context, rather than time series). The figure shows a neural network
ensemble model called deep quantile aggregation (DQA), that is trained as a second-layer model on
top of many constituent models, including some very flexible ones (such as deep neural networks).
Across 35 data sets, ordered by their signal-to-noise ratio along the x-axis, the WIS (recall this is a
generalization of absolute error for quantile-based predictions) of all of the constituent models and
other ensemble methods is compared to that of DQA. We can see that no method outperforms DQA
(nothing below the red horizontal line), and for problems with more signal, towards the right end of
the x-axis, DQA improves massively on a lot of the other models

3 Calibration
• Beyond point forecasts, all of the methods that we have learned thus far produce prediction intervals,
which reflect uncertainty in the predictions that are made, useful for downstream decision-making

• How can we measure the “fidelity” of such prediction intervals? Fixing a horizon h, denote by I1−αt+h|t
denote the level 1− α prediction interval made by our forecaster at time t, for the target variable xt+h
at time t+ h. For (say) a 90% prediction interval, this is often (though not necessarily) of the form:

I1−αt+h|t =
[
x̂t+h|t − σ̂hq0.95, x̂t+h|t + σ̂hq0.95

]
where x̂t+h|t is a point forecast of xt+h made a time t, σ̂2

h is an estimate of the variance of the h-step
ahead forecast distribution, and q0.95 is the 0.95 quantile of the standard normal distritbuion

• Given such intervals, we can measure their empirical coverage, in a time series CV sense:

Coverage =
1

n− t0

n∑
t=t0+1

1
{
xt ∈ I1−αt|t−h

}
In words, this the fraction of times that our prediction intervals cover their targets
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Figure 5: Deep stacking of quantile prediction models, from Fakoor et al. (2023).

• Of course, we want the coverage of our prediction intervals to roughly match the nominal level,

1

n− t0

n∑
t=t0+1

1
{
xt ∈ I1−αt|t−h

}
≈ 1− α

increasingly so for large n

• Sadly, traditional methods for producing prediction intervals will not always yield empirical coverage
that hovers around the nominal level. This is because the methods for producing these intervals rely
on assumptions that are often violated in practice

• See Figure 6 for an example of the empirical coverage of the CovidHub-ensemble model for forecast-
ing cases, hospitalizations, and deaths. These are very difficult forecasting problems (especially cases
and hospitalizations)

• In what remains, we’ll learn about a simple and generic method for adjusting prediction intervals on-
line, so that their empirical coverage tracks the nominal level more faithfully. Then we’ll learn about
how to generalize the concept of coverage (which applies to a prediction interval) so that we can
measure the fidelity of an entire predicted distribution. This brings us to a topic called calibration

3.1 Quantile tracking
• We briefly describe a method due to Angelopoulos et al. (2023), called quantile tracking. Fix h = 1
for simplicity, and suppose q̂1−αt were an estimated level 1− α quantile of the distribution of et, the
absolute forecast error at time t:

et =
∣∣xt − x̂t|t−1∣∣

• Note that a level 1− α prediction interval for xt could then be formed via:

I1−αt|t−1 =
[
x̂t|t−1 − q̂1−αt , x̂t|t−1 + q̂1−αt

]
9
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Figure 6: Empirical coverage of Covid-19 ensemble forecasts, from https://delphi.cmu.edu/blog/2021/
09/30/on-the-predictability-of-covid-19/.

• The motivation is as follows: et ≤ q̂1−αt ⇐⇒ xt ∈ I1−αt|t−1, so if q̂1−αt were a proper level 1− α quantile
in the long-run frequency sense:

1

T

t0+T∑
t=t0+1

1
{
et ≤ q̂1−αt

}
≈ 1− α

for large T , then we would indeed have empirical coverage:

1

T

t0+T∑
t=t0+1

1
{
xt ∈ I1−αt|t−1

}
≈ 1− α

for large T

• Angelopoulos et al. (2023) propose the following online quantile update:

q̂1−αt+1 =

{
q̂1−αt + η(1− α) if xt /∈ I1−αt|t−1
q̂1−αt − ηα if xt ∈ I1−αt|t−1

where η > 0 is a parameter called the learning rate. In words, if the latest interval does not cover,
then we increase the quantile by η(1− α) (make the next interval wider), whereas if the latest interval
covered, then we decrease the quantile by ηα (make the next interval narrower)

• This is very intuitive, and it turns out to be equivalent to online gradient descent run on a particular
loss function (which sums the quantile loss between et and q̂1−αt over all time t). See also Gibbs and
Candès (2021) for an earlier, related idea which inspired the quantile tracking work

• Angelopoulos et al. (2023) prove that if the forecast errors are bounded, et ≤ b for all t and for some
b <∞ (note that we do not need to know the bound b in order to run the algorithm), then quantile
tracking results in long-run coverage:

1

T

t0+T∑
t=t0+1

1
{
xt ∈ I1−αt|t−1

}
→ 1− α, as T →∞
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for any t0 and η. Importantly, this holds with no assumptions on the distribution of the data or the
forecast errors (or the forecaster itself)

• Note: we do not need to use absolute errors, we could use signed errors and fit the upper and lower
endpoints of the prediction intervals separately (to allow for asymmetry around the point forecast)

• Another important note: we do not need to start with point forecasts. We could start with the end-
points of a prediction interval produced by traditional methods, and iteratively adjust these to have
proper coverage. This will typically be more effective than using errors around a point forecast, since
the required adjustment will typically be more minor once we start from the interval endpoints

• In more detail, denote by [`
α/2
t|t−1, u

1−α/2
t|t−1 ] an equi-tailed level 1− α prediction interval produced by a

traditional method (like what you learned in the ARIMA or ETS lectures). Quantile tracking can be
used to adjust each of these endpoints individually to have proper one-sided coverage. We want:

1

T

t0+T∑
t=t0+1

1
{
xt ≤ ˆ̀α/2

t

}
≈ α/2 and

1

T

t0+T∑
t=t0+1

1
{
xt ≤ û1−α/2t

}
≈ 1− α/2

for large T . Then we would indeed have empirical coverage:

1

T

t0+T∑
t=t0+1

1
{
xt ∈ [ˆ̀α/2, û1−α/2]

}
≈ 1− α

for large T . To form the adjustments ˆ̀α/2, û1−α/2, we track the α/2 quantile of elot = xt − `α/2t|t−1 and
1− α/2 quantile of eup

t = xt − u1−α/2t|t−1 , respectively. For the lower endpoint adjustment, we define

ˆ̀α/2
t+1 = `

α/2
t+1|t + q̂

α/2
t+1

where q̂α/2t+1 itself is defined via the iteration

q̂
α/2
t+1 =

{
q̂
α/2
t + ηα/2 if xt > ˆ̀α/2

t+1

q̂
α/2
t+1 − η(1− α/2) if xt ≤ ˆ̀α/2

t+1

and similarly for the upper endpoint, we define

û
1−α/2
t+1 = u

1−α/2
t+1|t + q̂

1−α/2
t+1

where q̂1−α/2t+1 itself is defined via the iteration

q̂
1−α/2
t+1 =

{
q̂
1−α/2
t + η(1− α/2) if xt > û

1−α/2
t+1

q̂
1−α/2
t+1 − ηα/2 if xt ≤ û1−α/2t+1

• You can read the paper for more (extensions to handle unbounded scores, and prospective correc-
tions to forecast errors, driven by a connection to control theory)

3.2 PIT calibration
• Last but not least, we arrive at calibration. Unfortunately, this is a term that is often used ambigu-
ously, to mean different things. Here we use it to mean a precise way of measuring the fidelity of an
entire predicted distribution, rather than just a prediction interval

• That is, suppose that our forecaster produces an entire distribution Ft|t−h for the target xt at time t.
Generally, we think of Ft|t−h as a cumulative distribution function (CDF); note that, from Ft|t−h, we
could obviously produce prediction intervals for xt (at any levels that we desire)

• For notational simplicity, we will hide the forecast time t− h, and simply denote the predicted distri-
bution Ft|t−h by Ft in what follows
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• Now, there are numerous different definitions of what it means for a probabilistic forecaster (which
produces Ft) to be calibrated, and these definitions are not generally equivalent. (This contributes to
the frequent ambiguity in the use of the term “calibration”.) See, e.g., Gneiting and Resin (2023) for
a recent nice overview of different definitions and their relationships

• We will stick with one particular definition. The forecaster that produces the sequence of predicted
CDFs Ft is said to be PIT calibrated provided:

the empirical distribution of Ft(xt), t = 1, . . . , T converges
to the standard uniform distribution, Unif(0, 1), as T →∞

• Equivalently, this means:

1

T

T∑
t=1

1{Ft(xt) ≤ τ} → τ, as T →∞, for all τ ∈ [0, 1]

• Note that this is even stronger than asserting proper coverage of prediction intervals at a given level:
PIT calibration means that all prediction intervals at all levels have proper coverage. Assuming, as
we will do throughout for simplicity, that each Ft is strictly increasing and hence invertible, we have:

1

T

T∑
t=1

1{xt ≤ F−1t (τ)} → τ, as T →∞, for all τ ∈ [0, 1]

In other words, each F−1t (τ) is a proper level τ quantile in the long-run frequency sense, and we can
use [F−1t (α/2), F−1t (1− α/2)] to form a 1− α prediction interval with valid coverage

• To get intuition as to where the definition of PIT calibration comes from (including its name), recall
that for a random variable X, with CDF F (assumed continuous and hence invertible), its probability
integral transform (PIT) is F (X). A key property of the PIT: F (X) ∼ Unif(0, 1). The proof of this
fact is elementary: for any τ ,

P(F (X) ≤ τ) = P(X ≤ F−1(τ)) = F (F−1(τ)) = τ

In other words, the random variable F (X) is itself uniformly distributed

• We can now think of PIT calibration as seeking the uniform property of the PIT transform, when we
apply this idea along the sequence t = 1, 2, 3, . . . . Somewhat more precisely, if we draw a pair (F,X)
uniformly at random from the collection (Ft, xt), t = 1, 2, . . . of CDFs and target values over all time,
then PIT calibration requires F (X) ∼ Unif(0, 1)

• The observed PIT values Ft(xt), t = 1, 2, 3, . . . can be used as a diagnostic tool. These values always
lie in [0, 1], and we can form an density estimate (or a histogram) of these PIT values as we collect
them. If the forecaster is PIT calibrated, then these will look uniform, i.e., the PIT density will be
flat. If the forecaster is underconfident, then the PIT density will tend to look U-shaped. Meanwhile,
if the forecaster is overconfident, then the PIT density will tend to have an upside-down U-shape.
This behavior can be confirmed with simple examples with normal densities, see Figure 7. An exam-
ple of real PIT densities from short-term Flu forecasters is given in Figure 8

• Being more general than coverage, it is also harder to achieve PIT calibration in practice (certainly
in a distribution-lean sense, without many assumptions). However, this is an active area of research,
and we will likely see new advances in the next few years
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