
Homework 5: [YOUR NAME HERE]
Introduction to Time Series, Fall 2024

Due Friday November 22

The total number of points possible for this homework is 48. The number of points for each question is
written below, and questions marked as “bonus” are optional (points awarded for bonus problems can be
used to earn back points that you may have lost on other parts of this homework but will not put you above
full credit). Submit the knitted pdf file from this Rmd to Gradescope.

If you collaborated with anybody for this homework, put their names here:

Notes about this homework
This homework is an exercise in Covid-19 forecasting. You will build some basic forecasters of Covid-19
deaths at the national (U.S.) level, based on frameworks you’ve learned in the last few lectures: ARIMA and
ETS. You should know that, in true (prospective) Covid-19 forecasting, the situation is much harder than
the one you are facing in this homework. This is because of data revisions: the forecasters in true
(prospective) Covid-19 forecasting did not have access to the same data in real-time that you have access to
now, in retrospect. Instead, they had access to preliminary data that was subject to revisions, sometimes
very large and irregular ones, making forecasting much harder. See, e.g., McDonald et al. (2021), for a
discussion of the impact of revisions on forecasting.

Also, in most operational forecasting enterprises, epidemic/pandemic forecasting included, we would typically
be trying to leverage exogenous signals and sources of information to guide to our forecasts (beyond
statistical models like ARIMA or ETS which only rely on historical information about the target of interest).
Here we will pursue this only in limited fashion, at the end of this homework.

Covid-19 cases and deaths
First, download the data files cases_deaths.csv and covidhub_fc.csv from the
course GitHub repo. The former contains weekly reported Covid-19 cases and death counts in the U.S., from
February 29, 2020 to March 4, 2023. The latter contains 1-4 week ahead forecasts of weekly reported
Covid-19 death counts, from June 13, 2020 to March 4, 2023. These forecasts were generated by the
CovidHub ensemble model, which is an ensemble of all qualifying forecast submissions to the U.S. Covid-19
Forecast Hub, and was the basis of official CDC communications during the pandemic. See, e.g., Ray et
al. (2022) for discussion of the ensemble model.

The code below loads in these data frames (which you can run once the downloaded files are in your working
directory) and plots death curves along a set of 1-4 week ahead forecasts, across the pandemic.
library(tidyverse)

cases_deaths = read.csv("cases_deaths.csv")
covidhub_fc = read.csv("covidhub_fc.csv")

cases_deaths = cases_deaths |>
mutate(date = as.Date(date))

1

https://www.pnas.org/doi/10.1073/pnas.2111453118
https://www.sciencedirect.com/science/article/pii/S0169207022000966
https://www.sciencedirect.com/science/article/pii/S0169207022000966

covidhub_fc = covidhub_fc |>
mutate(target_date = as.Date(target_date))

fc_dates = seq.Date(
as.Date("2020-06-13"),
as.Date("2023-01-01"),
by = 6 * 7)

g = ggplot() +
geom_line(data = cases_deaths, aes(x = date, y = deaths)) +
labs(x = "Date", y = "Reported Covid-19 deaths") +
theme_bw() + theme(legend.position = "none")

layers = list()
for (fc_date in fc_dates) {

layers = c(
layers,
geom_vline(xintercept = fc_date, linetype = 2),
geom_ribbon(data = covidhub_fc |>

mutate(forecast_date = target_date - h * 7) |>
filter(forecast_date == fc_date),

aes(x = target_date, ymin = forecast_0.1, ymax = forecast_0.9),
fill = 2, alpha = 0.5),

geom_line(data = covidhub_fc |>
mutate(forecast_date = target_date - h * 7) |>
filter(forecast_date == fc_date),

aes(x = target_date, y = forecast_0.5),
color = 2, linewidth = 1.25))

}

g + layers

0

10000

20000

30000

2021 2022 2023
Date

R
ep

or
te

d
C

ov
id

−
19

 d
ea

th
s

As you can see from the plot, the ensemble model produces both point forecasts and prediction intervals. In
fact, the prediction intervals are derived from predicted quantiles. The point forecast is stored in the
forecast_0.5 column, whereas the 80% prediction interval is formed by taking the difference of the

2

forecast_0.9 and forecast_0.1 columns (and similarly for other levels). Lastly, the h column indicates
horizon of the forecast (in weeks), and the target_date column denotes the target date (aligned by the end
of the week), whose death count the ensemble model is predicting. The forecast date can hence be derived
from target_date - h * 7 (which, since target_date is stored as a Date variable, will be understood
correctly to mean subtract off h * 7 days from the given date).

Evaluating the ensemble model’s MAE
1. (4 pts) Before building any forecasters of our own, we’ll evaluate the ensemble model’s mean absolute

error (MAE). We won’t be able to beat this with our models, but it’ll give us a sense of how
gold-standard forecasts perform, for this problem. First, you need join the death data to the forecast
data. Using left_join(), join covidhub_fc and cases_deaths by date: specifically, the
target_date variable in the first data set should be matched to the date variable in the second. As a
check, you should see for that the 4 week ahead prediction for the target date July 4, 2020, the point
forecast is 5169.654 and the death count is 3684. After joining the data sets, compute the MAE of the
point forecasts per horizon, report the results.

2. (2 pts) Using the same joined data set from Q1, compute the coverage of 80% prediction intervals, per
horizon, and report the results.

Evaluating the baseline model’s MAE
3. (5 pts) As one more thing to do before building our own models, we’ll develop a simple baseline model

and compute its MAE. Make a copy of the joined data from Q1, and overwrite the point forecasts with
the true value of deaths from h weeks ago. In other words, this baseline simply predicts (at all horizons)
that we will see the same number of new reported Covid-19 deaths as what we observed in the last
week. (Its forecast trajectories are thus flat lines, extrapolating forward from the latest observation.)
After you’ve done this, compute the MAE of the baseline forecasts, per horizon, and report the results.

4. (Bonus) Develop a method to form an 80% prediction interval around the baseline model’s point
forecasts. This should still be an ex-ante prediction in the sense that it should not be using data after
the forecast date. Once you’ve done this, compute the coverage of these prediction intervals, per
horizon, and report the results.

ARIMA models
5. (2 pts) Now we’ll start building our own models, starting with ARIMA. Because the data is highly

nonstationary (recall the plot above which showed death counts along with the ensemble forecasts),
we’ll consider differencing. Plot the first and second differences of the death data, and comment on
what you find.

6. (5 pts) Fit two models: ARIMA(1,1,0) and ARIMA(2,1,0), using ARIMA() from the fable package.
Each model should be fit only using the data up through June 6, 2020. (This is also therefore the
forecast date.) These models should be fit with the inclusion of a constant but without any seasonality
terms (specify the formula carefully to ensure this). After fitting these models, use these to make 1-4
week ahead forecasts and plot them (along with the true death counts through June 6, 2020) with
autoplot(). Hint: before calling fable::model() you’ll have to convert cases_deathsto a tsibble
object, with index = date.

7. (4 pts) For the two models from Q6, check that their 1 week ahead point forecasts match the formulas
you know underlie them. To do so, extract the coefficients from the fitted models, form the 1 week
ahead predictions manually, and demonstrate that these match the given forecasts.

8. (6 pts) Implement time series cross-validation (CV) for these ARIMA models, ARIMA(1,1,0) and
ARIMA(2,1,0), each with constants (and no seasonality). The simplest way to do this will be write a

3

loop (to refresh yourself, look back at the lecture code from weeks 3-4, “Linear regression and
prediction”, or from the homeworks after that). As you saw in the last homework, the fable package
provides its own way to run time series CV, but it will use up too much memory (and be too
cumbersome for the computations that involve exogenous features, later).

The code below provides a scaffold that you should build on, where we run time series CV over June 6,
2020 to February 4, 2023. Make sure to explicitly define the horizon h in forecasts stored in the fc
object, which will be useful for subsequent computations.The end result of this question will be a
tibble, called fable_fc, which contains all of the 1-4 week ahead forecasts made in time series CV by
your two ARIMA models. We will continue to append forecasts to this tibble in subsequent questions,
as we build more models using fable.

t0 = as.Date("2020-06-06")
t1 = as.Date("2023-02-04")
fc_dates = cases_deaths |> filter(between(date, t0, t1)) |> pull(date)
fable_fc = tibble()

for (i in 1:length(fc_dates)) {
fc_date = fc_dates[i]
cat(as.character(fc_date), "... ")

dat = ... construct data set using data up through the forecast date

fit = ... fit the ARIMA(1,1,0) and ARIMA(2,1,0) models

fc = ... make forecasts, up to horizon 4; important: it will help to
create a column in fc that indicates the forecast horizon!

fable_fc = bind_rows(fable_fc, as_tibble(fc))
}

9. (4 pts) Compute the MAE of the time series CV forecasts made by each ARIMA model, per horizon.
(In order to do this, you’ll need to join fable_fc to the death data from cases_deaths.) Compare
this to the previously-computed MAEs of the ensemble and baseline models by displaying their MAE
curves, as a function of horizon, all on the same plot. According to MAE, your ARIMA models should
be better than the baseline, but notably worse than the ensemble.

10. (Bonus) Do the same as in Q9, but substituting MAE with coverage of the 80% prediction intervals.

ETS models
11. (8 pts) Fit two ETS models, using ETS() from the fable package: Holt’s linear trend and damped

linear trend. Each of these models should have additive errors, and no seasonality. Implement time
series CV to evaluate them, just as you did in Q8; you should be appending the forecast from these
ETS models to fable_fc. Then, as in Q9, plot their MAE curves as a function of horizon, and overlay
the curves from all models considered thus far. Discuss what you find.

12. (Bonus) Compute the coverage of 80% prediction intervals from each of the ETS models, per horizon,
and plot alongside the coverage curves from all models considered thus far.

Exogenous features
13. (8 pts) As mentioned in the intro to this homework, exogenous features can play a huge role developing

useful forecasts. Fortunately, here you already have a fairly obvious candidate for such an exogenous
feature: reported Covid-19 case counts. Both intuitively and quantitatively (recall the cross-correlation

4

plots that we computed near the start of the course), we know that this is a leading indicator of
Covid-19 deaths. In order to be able to make up to 4 week ahead forecasts, we’ll use 4-week-lagged
Covid-19 cases as exogenous feature, to add to our ARIMA model. Technically, when you add an
exogenous feature in a formula in the call to ARIMA(), this fits a regression model with ARIMA errors.

Consider a regression model of log(deaths) on log(lag(cases, 4)), with ARIMA(2,1,0) errors.
The log transform is to stabilize the variance; we could have done this earlier, in our ARIMA models in
the above questions, but it would have made the forecasts from our pure ARIMA models (without
exogenous features) too volatile. Include an intercept (constant) term in the model. Implement time
series CV for this model, using the code provided below as a scaffold. Compute the MAE per horizon,
and compare this to the MAEs from the models considered thus far, on one plot. Discuss what you
find—you should have taken a big leap toward the performance of the ensemble! Hint: read the
comments below carefully. In order to make forecasts you will need to construct a new data set to pass
to forecast() (as opposed to simply specifying the horizon) because forecast() needs to know
where to find the exogenous feature(s) to construct forecasts.

cases_deaths = cases_deaths |> mutate(x = lag(cases, 4))

for (i in 1:length(fc_dates)) {
fc_date = fc_dates[i]
cat(as.character(fc_date), "... ")

dat = ... construct data set using data up through the forecast date

fit = ... fit the regression model using ARIMA(2,1,0) errors

new_dat = new_data(dat, 4) |>
left_join(cases_deaths, by = "date")

fc = ... make forecasts up to horizon 4, but now by specifying new_dat

fable_fc = bind_rows(fable_fc, as_tibble(fc))
}

14. (Bonus) Compute the coverage of 80% prediction intervals from the ARIMA model with the exogenous
feature (cases), and plot alongside the coverage curves from models considered thus far.

15. (Bonus) For the regression model from Q13 (pick a single regression model that was fit at a single
iteration of time series CV), check that its 1 week ahead point forecast matches the formulas you know
underlie it. As before, you’ll have to extract the coefficients from the fitted model, and then form the 1
week ahead predictions manually, verifying that you get the same result. Hint: here you should take
the forecast to be the median of the forecast distribution and not the mean. Because of the data
transformation (we’re modeling log deaths), the fable package will do something to adjust the mean
after back-transforming which is nonobvious. This page gives more details.

16. (Bonus) Repurposing the code used to plot the ensemble forecasts given at the start of the homework,
plot forecasts from the 5 fable models that you’ve developed, at the same set of forecast dates. (You
should have 5 separate plots.)

5

https://robjhyndman.com/hyndsight/backtransforming/

	Notes about this homework
	Covid-19 cases and deaths
	Evaluating the ensemble model's MAE
	Evaluating the baseline model's MAE
	ARIMA models
	ETS models
	Exogenous features

