
Homework 3: [YOUR NAME HERE]
Introduction to Time Series, Fall 2024

Due Friday October 11

The total number of points possible for this homework is 38. The number of points for each question is
written below, and questions marked as “bonus” are optional (points awarded for bonus problems can be
used to earn back points that you may have lost on other parts of this homework but will not put you above
full credit). Submit the knitted pdf file from this Rmd to Gradescope.

Regression troubles
1. (5 pts) Suppose that y ∈ Rn is a response vector and X ∈ Rn×p is a predictor matrix, with p > n.

Prove that there is at least one η 6= 0 (not equal to the zero vector) that is in null(X), the null space of
X. Prove that if β̃ is a least squares solution in the regression of y on X, then any vector of the form

β̂ = β̃ + η, for η ∈ null(X)

is also a solution.

2. (6 pts) With X, y as in Q1, suppose that β̃ is a least squares solution with β̃j > 0, and suppose that
null(X) 6⊥ ej , where ej is the jth standard basis vector (i.e., ej is a vector with all 0s except for a 1 in
the jth component), and recall we write S ⊥ v for a set S and vector v provided uT v = 0 for all u ∈ S.
Prove that there exists another least squares solution β̂ such that β̂j < 0.

Ridge and lasso
3. (8 pts) Using the cardiovascular mortality regression data, form lagged features from the particulate

matter and temperature variables, using lags 4, 8, . . . , 40 from each. Using the glmnet package, fit a
ridge regression and lasso regression (two separate models), each over a grid of tuning parameter values
λ chosen by the glmnet() function, with cardiovascular mortality as the response and all the lagged
features as predictors (you should have 20 in total: 10 from particulate matter, and 10 from
temperature). However, make sure you do this in a split-sample setup for validation, as follows, for
each of ridge and lasso:

• fit the glmnet object on the first half of the time series;

• make predictions on the second half of the time series, for each λ;

• record the MAE of the predictions on the second half, for each λ;

• choose and report the value of λ with the lowest MAE;

• plot the cardiovascular mortality time series, along with the predictions on the second half, and print
the MAE and the selected value of λ on the plot.

You can build on the code from the regularization lecture (weeks 5-6: “Regularization and smoothing”)
for fitting the ridge and lasso models, and the regression lecture (weeks 3-4: “Regression and
prediction”) for the split-sample validation. Note carefully that the lecture code includes lag 0, and here
we do not, so that we can make ex-ante 4-week ahead forecasts!

1

4. (1 pts) Which lagged features were present in the MAE-optimal lasso model, selected by split-sample
validation, in Q3?

5. (8 pts) Repeat Q3, except implement time series cross-validation instead of split-sample validation.
You should begin time series cross-validation on the second half of the time series, treating the first half
as a burn-in set. Also, be sure to fit each ridge or lasso model using a trailing window of 200 time
points (not all past).

Warning: doing time series cross-validation properly will require us to pay attention to the following.
The glmnet() function chooses a sequence of tuning parameter values λ based on the passed feature
matrix x and response vector y (its first two arguments). However, in time series cross-validation, this
will change at each time point. So if you just call glmnet() naively, then you will not have a consistent
λ sequence over which to calculate MAE and perform tuning.

You can circumvent this issue by defining your own λ sequence ahead of time, and forcing glmnet() to
use it by passing it through its lambda argument. Indeed, the best thing to do here is just to use the
lambda sequence that glmnet() itself derived for the ridge and lasso models fit to the first half of the
time series, which you already have from Q3. Do this, and then just as in Q3, produce a plot of the
cardiovascular mortality time series, along with the predictions from time series CV on the second half,
and print the MAE and the selected value of λ on the plot.

You can build off the code given in the regression lecture for time series cross-validation (or the code
you wrote in Homework 2 to implement time series cross-validation).

6. (Bonus) Report which lagged features were most frequently selected by the lasso. Because the lasso
models will be refit at each time point (in the second half of the data set), you will have to additionally
store the lasso solutions along your time series CV pass. Then, look back at the solutions that
correspond to the MAE-optimal λ value, and choose some way of summarizing which of its components
were consistently large in magnitude over time.

HP filter
7. (5 pts) Recall in lecture we saw the HP filter could be written explicitly as

θ̂ = (I + λDTD)−1︸ ︷︷ ︸
K

y,

where D ∈ R(n−2)×n is the second difference matrix on n points. In other words, defining K ∈ Rn×n as
above,

θ̂i =
n∑

j=1
Kijyj , i = 1, . . . , n.

Compute the matrix K empirically for a problem of size n = 100, and setting the tuning parameter to
be λ = 100; inspect three of its rows, at indices i = 25, 50, 75. For each i, plot the ith row as a curve
over the underlying position 1, . . . , n; that is, plot the x-y pairs

(xj , yj) = (j,Kij), j = 1, . . . , n

as a curve. Overlay the curves for all three rows on the same plot, each in a different color. What do
these curves look like to you? Use the plot to argue that the HP filter acts like a kernel smoother.

8. (Bonus) Do a literature search to find theory on the asymptotically equivalent kernel for the HP filter.
This should have a closed-form. Plot this and comment on whether or not your empirical results adhere
to what is known asymptotically.

2

Trend filter
9. (Bonus) Implement 5-fold cross-validation in order to tune λ in trend filtering applied to the Boston

marathon men’s data set. Recall the description of how to set folds in a special “structured” way, for
tuning smoothers, given near the end of the lecture notes (weeks 5-6: “Regularization and smoothing”).
The code below shows how to run trend filtering and derive estimates at the held-out points for one
fold. You can build off this code for your solution. You will need to install the glmgen package from
GitHub, which you can do using the code that has been commented out.

Important note: just like glmnet(), the trendfilter() function (in the glmnet package) computes
its own lambda sequence. So you will need to define an initial lambda sequence to pass to each
subsequent call to trendfilter(), so that you can have a consistent grid of tuning parameter values
over which to perform cross-validation. We do this below by using the lambda sequence that
trendfilter() itself derived when the trend filtering model is fit on the full data set.

After implementing cross-validation, compute and report the λ value with the smallest cross-validated
MAE. Then, lastly, plot the solution at this value of λ when the model is fit to the full data set (this is
already available in the tf object below.)

devtools::install_github("glmgen/glmgen", subdir = "R_pkg/glmgen")
library(glmgen)
library(fpp3)

boston = boston_marathon |>
filter(Year >= 1924) |>
filter(Event == "Men's open division") |>
mutate(Minutes = as.numeric(Time)/60) |>
select(Year, Minutes)

Fit trend filtering on the entire data in order to grab the lambda sequence
tf = trendfilter(x = boston$Year, y = boston$Minutes, k = 1)
lambda = tf$lambda

n = nrow(boston) # Number of points
k = 5 # Number of folds
inds = rep_len(1:k, n) # Folds indices

Fit trend filtering on all points but those in first fold. We are forcing it
to use the lambda sequence that we saved above
tf_subset = trendfilter(x = boston$Year[inds != 1],

y = boston$Minutes[inds != 1],
k = 1, lambda = lambda)

Compute the predictions on the points in the first fold. Plot the predictions
(as a sanity check) at a particular value of lambda in the middle of the grid
yhat = predict(tf_subset, x.new = boston$Year[inds == 1])
plot(boston$Year, boston$Minutes, col = 8)
points(boston$Year[inds == 1], yhat[, 25], col = 2, pch = 19, type = "o")

3

1940 1960 1980 2000 2020

13
0

14
0

15
0

16
0

boston$Year

bo
st

on
$M

in
ut

es

Spectral analysis
10. (3 pts) Let ωj , j = 1, . . . , p be fixed and arbitrary frequencies and let Uj1, Uj2, j = 1, . . . , p be

uncorrelated random variables with mean zero, where Uj1, Uj2 have variance σ2
j . Define

xt =
p∑

j=1

(
Uj1 cos(2πωjt) + Uj2 sin(2πωjt)

)
for t = 1, 2, 3, Prove that this process is stationary, and show that its auto-covariance function is of
the form given in lecture (weeks 7-8, “Spectral analysis and filtering”).

11. (2 pts) Construct a small empirical example to verify the auto-covariance formula you derived in Q10.
That is, generate a process with at least p = 2 components. compute its auto-correlation function with
acf(), and compare to the analytic formula you derived.

4

	Regression troubles
	Ridge and lasso
	HP filter
	Trend filter
	Spectral analysis

