
Homework 2: [YOUR NAME HERE]
Introduction to Time Series, Fall 2024

Due Friday September 27

The total number of points possible for this homework is 39. The number of points for each question is
written below, and questions marked as “bonus” are optional (points awarded for bonus problems can be
used to earn back points that you may have lost on other parts of this homework but will not put you above
full credit). Submit the knitted pdf file from this Rmd to Gradescope.

If you collaborated with anybody for this homework, put their names here:

Simple regression
1. (2 pts) Derive the population least squares coefficients, which solve

min
β1,β0

E
[
(y − β0 − β1x)2],

by differentiating the criterion with respect to each βj , setting equal to zero, and solving. Repeat the
calculation but without intercept (without the β0 coefficient in the model).

2. (2 pts) As in Q1, now derive the sample least squares coefficients, which solve

min
β1,β0

n∑
i=1

(yi − β0 − β1xi)2.

Again, repeat the calculation but without intercept (no β0 in the model).

3. (2 pts) Prove or disprove: in the model without intercept, the regression coefficient of x on y is the
inverse of that from the regression of y on x. Answer the question for both the population version and
the sample version.

4. (3 pts) Consider the following hypothetical. Let y be the height of a child and x be the height of their
parent, and consider a regression of y on x, performed in a large population. Suppose that we estimate
the regression coefficients separately for male and female parents (two separate regressions) and we find
that the slope coefficient from the former regression β̂dad

1 is smaller than that from the latter β̂mom
1 .

Suppose however that we find (in this same population) the sample correlation between a father’s
height and their child’s height is larger than that between a mother’s height and their child’s height.
What is a plausible explanation for what is happening here?

Multiple regression
5. (2 pts) In class, we claimed that the multiple regression coefficients, with respect to responses yi and

feature vectors xi ∈ Rp, i = 1, . . . , n, can be written in two ways: the first is

β̂ =
( n∑
i=1

xix
T
i

)−1 n∑
i=1

xiyi.

The second is
β̂ = (XTX)−1XT y,

1



where X ∈ Rn×p is a feature matrix, with ith row xi, and y ∈ Rn is a response vector, with ith

component yi. Prove that these two expressions are equivalent.

6. (Bonus) Derive the population and sample multiple regression coefficients by solving the corresponding
least squares problem (differentiating the criterion with respect to each βj , setting equal to zero, and
solving). For the sample least squares coefficient, deriving either representation in Q5 will be fine.

Covariance calculations
7. (3 pts) Let x ∈ Rn and y ∈ Rm be random vectors, and let A ∈ Rk×n and B ∈ R`×m be fixed matrices.

Prove that
Cov(Ax,By) = ACov(x, y)BT .

Prove as a consequence that Cov(Ax) = ACov(x)AT . Hint: you may use the rule for covariances of
linear combinations (as reviewed in the lecture from week 2, “Measures of dependence and
stationarity”).

8. (2 pts) Suppose that y = Xβ + ε, with X and β fixed, and where ε is a vector with white noise entries,
with variance σ2. Use the rule in Q7 to prove that for the sample least squares coefficients, namely,
β̂ = (XTX)−1XT y, it holds that

Cov(β̂) = σ2(XTX)−1.

9. (4 pts) An equivalent way to state the Gauss-Markov theorem is as follows. Under the model from Q8,
if β̃ is any other unbiased linear estimator of β (where linearity means that β̃ = My for a fixed matrix
M) then

Cov(β̂) . Cov(β̃)
where . means less than or equal to in the PSD (positive semidefinite) ordering. Precisely, A . B if
and only if B −A is a PSD matrix, which recall, means zT (B −A)z ≥ 0 for all vectors z. Prove that
this is indeed equivalent to the statement of the Gauss-Markov theorem given in lecture.

Metrics matter
10. (4 pts) Below is some code to generate data y and predictions yhat1 and yhat2 from two hypothetical

models. Plot the predictions from each model as a line overlaid on top of the original data. Give each
line its own color, and use a legend to denote which model it refers to. Then compute and report the
mean absolute error (MAE) and mean absolute percentage error (MAPE), as defined in lecture, for
each model. Discuss and explain what you find.

set.seed(0)
x = 1:50
y = rpois(n = 50, lambda = c(rep(5, 25), 5 + exp(0:24 * 0.2)))
yhat1 = c(rep(6.5, 25), 6.5 + exp(0:24 * 0.2))
yhat2 = c(rep(5, 25), 5 + exp(0:24 * 0.18))

11. (4 pts) Define a new vector of predictions yhat3 from a third hypothetical model, by starting with
those yhat2 from the second model, and changing the multiplier in the exponent for the last 25
predictions from 0.18 to 0.22. As in the last question, plot yhat2 and yhat3 as colored lines overlaid
on top of the data and clearly mark them with a legend. Also, compute and compare the MAE and
MAPE of the third model versus the second. It should be worse according to both metrics. Finally, for
each of yhat2 and yhat3, compute what is known as mean absolute relative error (MARE):

MARE = 100× 1
N

N∑
t=1

|yt − ŷt|
|ŷt|

Discuss and explain what you find.
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Cross-validation
12. (3 pts) Recall the R code from lecture that performs time series cross-validation to evaluate the mean

absolute error (MAE) of predictions from the linear regression of cardiovascular mortality on 4-week
lagged particulate levels. Adapt this to evaluate the MAE of predictions from the regression of
cardiovascular mortality on 4-week lagged particulate levels and 4-week lagged temperature (2
features). Fit each regression model using a trailing window of 200 time points (not all past). Plot the
predictions, and print the MAE on the plot, following the code from lecture.

Additionally (all drawn on the same figure), plot the fitted values on the training set. By the training
set here, we mean what is also called the “burn-in set” in the lecture notes, and indexed by times 1
through t0 in the code. The fitted values should come from the initial regression model that is fit to
the burn-in set. These should be plotted in a different color from the predictions made in time series
cross-validation pass. Print the MAE from the fitted values the training set somewhere on the plot
(and label this as “Training MAE” to clearly differentiate it).

13. (2 pts) Repeat the same exercise as in Q12 but now with multiple lags per variable: use lags 4, 8, 12 for
each of particulate level and temperature (thus 6 features in total). Did the training MAE go down?
Did the cross-validated MAE go down? Discuss. Hint: you may find it useful to know that lm() can
take a predictor matrix, as in lm(y ~ x) where x is a matrix; in this problem, you can form the
predictor matrix by calling cbind() on the lagged feature vectors.

14. (2 pts) Repeat once more the same exercise as in the last question but now with many lags per
variable: use lags 4, 5, . . . , through 50 for each of particulate level and temperature (thus 47 x 2 = 94
features in total). Did the training MAE go down? Did the cross-validated MAE go down? Are you
surprised? Discuss.

More features, the merrier?
15. (2 pts) Let yi be an arbitrary response, and xi ∈ Rp be an arbitrary feature vector, for i = 1, . . . , n. Let

x̃i = (xi1, . . . , xip, x̃i,p+1), i = 1, . . . , n

be the result of appending one more feature. Let ŷi denote the fitted values from the regression of yi on
xi, and let ỹi denote the fitted values from the regression of yi on x̃i. Prove that

n∑
i=1

(yi − ỹi)2 ≤
n∑
i=1

(yi − ŷi)2.

In other words, the training MSE will never get worse as we add features to a given sample regression
problem.

16. (2 pts) How many linearly independent features do we need (how large should p be) in order to achieve
a perfect training accuracy, i.e., training MSE of zero? Why?

17. (Bonus) Implement an example in R in order to verify your answer to Q16 empirically. Extra bonus
points if you do it on the cardiovascular mortality data, using enough lagged features. You should be
able to plot the fitted values from the training set and see that they match the observations perfectly
(and the CV predictions should look super wild).
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