
Homework 1: [YOUR NAME HERE]
Introduction to Time Series, Fall 2024

Due Friday September 13

The total number of points possible for this homework is 42. The number of points for each question is
written below, and questions marked as “bonus” are optional (points awarded for bonus problems can be
used to earn back points that you may have lost on other parts of this homework but will not put you above
full credit). Submit the knitted pdf file from this Rmd to Gradescope.

If you collaborated with anybody for this homework, put their names here:

Correlation and independence
1. (3 pts) Give an example to show that two random variables can be uncorrelated but not independent.

You must explicitly prove that they are uncorrelated but not independent (for the latter, you may
invoke any property that you know is equivalent to independence).

2. (2 pts) If (X,Y ) has a multivariate Gaussian distribution, and X,Y are uncorrelated: Cov(X,Y ) = 0,
then show that X,Y are independent.

3. (3 pts) Give an example to show that two random variables X,Y can be marginally Gaussian
(meaning, X is Gaussian, and Y is Gaussian) and uncorrelated but not independent. Hint: (X,Y )
cannot be multivariate Gaussian in this case.

Random walks
4. (2 pts) Let xt, t = 1, 2, 3, . . . be a random walk with drift:

xt = δ + xt−1 + wt,

where (say) wt ∼ N(0, σ2) for t = 1, 2, 3, . . .. Recall from lecture that this is not stationary. Prove that
ρ(t− 1, t) =

√
t−1

t . What does this approach as t→∞ and what is the interpretation of this result?

5. (3 pts) Suppose that both δ and σ2 are unknown. Devise a test statistic for the null hypothesis that
δ = 0 in the random walk model from Q4. This should be based on a standard test that you know
(have learned in a past course) for testing whether the mean of Gaussian is zero, with unknown
variance, based on i.i.d. samples from this Gaussian.

State what the null distribution is for this test statistic, and how you would compute it in R (a
function name is sufficient if the test statistic is implemented as a function in base R). Hint: consider
taking differences along the sequence . . . after that, what you want sounds like “c-test”, or “p-test”, or
“φ-test”, or . . .

6. (2 pts) Simulate a random walk of length 200 without drift, i.e., δ = 0, and compute the test statistic
you devised in Q5 and report its value. Then repeat, but using a large nonzero value δ.

7. (4 pts) Simulate 50 random walks each of length 200, with nonzero drift, and plot them on the same
plot using transparent coloring, following the code used in the lecture notes from week 2 (“Measures of
dependence and stationarity”). Calculate the sample mean µ̂t at each time t, across the repetitions,
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and plot as a dark line on the same plot. Then, calculate the sample standard deviation σ̂t at each
time t, and plot the mean plus or minus one standard deviation: µ̂t ± σ̂t, as dark dotted lines on the
same plot. Describe what you see (you should see that both the mean and variance increase over time).

Stationarity
8. (3 pts) Compute the mean, variance, auto-covariance, and auto-correlation functions for the process

xt = wtwt−1,

where each wt ∼ N(0, σ2), independently. Is xt, t = 1, 2, 3, . . . stationary?

9. (3 pts) Repeat the same calculations in Q8, but where each wt ∼ N(µ, σ2), independently, for µ 6= 0. Is
xt, t = 1, 2, 3, . . . stationary?

10. (3 pts) Simulate the processes from Q8 (with µ = 0) and Q9 (with µ 6= 0), yielding two time series of
length 200, and plot the results. Compute the sample mean and sample variance for each one (to be
clear, this is just a sample mean of all data, over all time, and similarly for the variance), and check
that these are close to the population mean and variance from Q8 and Q9. Also compute and plot the
sample auto-correlation function using acf(), and check again that it agrees with the population
auto-correlation function from Q8 and Q9.

11. (2 pts) Give an example of a weakly stationary process that is not strongly stationary.

12. (Bonus) A function κ is said to be positive semidefinite (PSD) provided that
n∑

i,j=1
aiajκ(ti − tj) ≥ 0, for all n ≥ 1, all a1, . . . , an, and all t1, . . . , tn.

Prove that if xt, t = 1, 2, 3, . . . is stationary, and γx(h) is its auto-covariance function (as a function of
lag h), then γx is PSD. You may use whatever elementary probability and/or linear algebra facts that
you would like, as long as you state clearly what you are using.

13. (Bonus) Prove moreover that the sample auto-covariance function γ̂x defined in lecture is also PSD.

Joint stationarity
Notions of joint stationarity, between two time series, can be defined in an analogous way to how we defined
stationarity in lecture. We say that two time series xt, t = 1, 2, 3, . . . and yt, t = 1, 2, 3, . . . are strongly jointly
stationary provided that:

(xs1 , xs2 , . . . , xsk
, yt1 , yt2 , . . . , yt`

) d= (xs1+h, xs2+h, . . . , xsk+h, yt1+h, yt2+h, . . . , yt`+h),
for all k, ` ≥ 1, all s1, . . . , sk and t1, . . . , t`, and all h.

Here d= means equality in distribution. In other words, any collection of variates from the two sequences has
the same joint distribution after we shift the time indices forward or backwards in time. Meanwhile, we say
that xt, t = 1, 2, 3, . . . and yt, t = 1, 2, 3, . . . are weakly jointly stationary or simply jointly stationary
provided that each series is stationary, and:

γxy(s, t) = γxy(s+ h, t+ h), for all s, t, h.

Here γxy is the cross-covariance function between x, y. In other words, the cross-covariance function must be
invariant to shifts forward or backwards in time, and is only a function of the lag h = s− t. For jointly
stationary series, we can hence abbreviate their cross-covariance function by γxy(h).

14. (2 pts) Give an example of two time series that are weakly jointly stationary but not strongly jointly
stationary.
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15. (3 pts) If xt, t = 1, 2, 3, . . . and yt, t = 1, 2, 3, . . . form a joint Gaussian process, which means that any
collection (xs1 , xs2 , . . . , xsk

, yt1 , yt2 , . . . , yt`
) of variates along the series has a multivariate Gaussian

distribution, then prove that weak joint stationarity implies strong joint stationarity.

16. (3 pts) Write down explicit formulas that shows how to estimate the cross-covariance and
cross-correlation function of two finite time series xt, t = 1, . . . , n and yt, t = 1, . . . , n, under the
assumption of joint stationarity. Hint: these should be entirely analogous to the sample
auto-covariance and sample auto-correlation functions that we covered in lecture.

17. (4 pts) Following the code used in the lecture notes from week 2 (“Measures of dependence and
stationarity”), use the ccf() function to compute and plot the sample cross-correlation function
between Covid-19 cases and deaths, separately, for each of Florida, Georgia, New York, Pennsylvania,
and Texas. (The lecture code does this for California.) Comment on what you find: do the
cross-correlation patterns look similar across different states?

Also, follow the lecture code to plot the case and death signals together, on the same plot, for each
state (the lecture code provides a way to do this so that they are scaled dynamically to attain the same
min and max, and hence look nice when plotted together). Comment on whether the estimated
cross-correlation patterns agree with what you see visually between the case and death signals.

3


	Correlation and independence
	Random walks
	Stationarity
	Joint stationarity

